YIXUAN HUANG

Ph.D. student at University of Utah \diamond Personal Website

EDUCATION

University of Utah, Salt Lake City, UT Ph.D. in Computer Science Advisor: Prof. Tucker Hermans Selected Coursework: Robotics, Robot Control, Robot Learning, Motion plannin	Aug 2020 - Current Overall GPA: 3.97/4.0 g, Computer Vision
University of California, San Diego, La Jolla, CA Exchange student Advisor: Prof. Sicun Gao Senior Coursework: Deep Learning, Machine Learning, Operating System, Comp	Sep 2018 - Jun 2019 Overall GPA: 3.91/4
Northeastern University, Liaoning, China B.E. in Computer Science and Technology (<u>top</u> student in the department) Department of Computer Science and Engineering Overall GP Coursework: Discrete Mathematics, Statistics and Probability, Numerical Analys	Sep 2016 - Jun 2020 A: 93.2/100, Rank: 1/278 sis, Electronic Theory

PUBLICATIONS

Y. Huang, J. Yuan, C. Kim, F. Li, and T. Hermans. Reasoning and Planning for Unobserved Objects with Video Tracking and Memory Transformer Models (2024 IEEE International Conference on Robotics and Automation (ICRA)). (In preparation);

Y. Huang, N. C. Taylor, A. Conkey, W. Liu, and T. Hermans. Latent Space Planning for Multi-Object Manipulation with Environment-Aware Relational Classifiers (IEEE Transactions on Robotics (T-RO)). (Under review); [Project Website] [Paper]

Y. Huang, A. Conkey, T. Hermans. Planning with Learned Multi-Object Relations Using Graph Neural Networks (2023 IEEE International Conference on Robotics and Automation (ICRA)); [Project Website] [Paper]

Y. Huang, M. Bentley, T. Hermans, A. Kuntz. Toward Learning Context-Dependent Tasks from Demonstration for Tendon-Driven Surgical Robots (2021 International Symposium on Medical Robotics); (Best Paper Award Finalist & Best Student Paper Award Finalist) [Project Website] [Paper]

Y. Huang, M. Bentley, R. Benny ,T. Hermans, A. Kuntz. Learning Context-Dependent Tasks from Demonstration and Partial-View Point Clouds for Tendon-Driven Surgical Robots (In preparation for Journal of Medical Robotics Research (JMRR));

RESEARCH EXPERIENCE

Reasoning and Planning for Unobserved Objects with Memory Models Mar 2023 - now

- \cdot Leverage a memory model and video tracking model to reason about the disappearance and reappearance of multiple objects.
- · A real-world system to rearrange multiple unobserved objects to achieve some human-specified goal relations.
- · Achieved sim-to-real transfer without fine-tuning.

Efficient Long Term Planning with Multiple Objects and Environments Sep 2022 - Mar 2023

- · A novel framework to explicitly represent partial-view environments including tables and bookshelves.
- \cdot The first work to reason about how relations among multiple objects and environments change based on robot actions.;
- $\cdot\,$ Achieved efficient long-term planning with graph search and learned object semantics.

- · Proposed a novel graph neural network framework for multi-object manipulation to predict how inter-object relations change given robot actions.;
- · Achieved multi-step planning to reach target goal relations.;
- · Showed our model trained purely in simulation transfers well to the real world;
- · A system to rearrange a variable number of objects with a range of shapes and sizes using both push and pick and place skills.

Learning from Demonstration for Tendon-Driven Robot

- · Significant steps toward the automation of context-dependent surgical tasks learned from demonstration;
- · Proposed three learning approaches to directly learn the context embedding from 3D partial-view point cloud to remove the burden of directly giving specific context;
- · First use of contextual learning for producing complex trajectories for surgical robots and first instance of LfD in continuum robots;
- · A system to perform learned tasks in novel context not seen during the demonstrations;
- · A system to apply our approaches trained in simulation to real-world tendon robot without any fine-tuning;

Safe Reinforcement Learning

- · Proposed a novel model-based curriculum for solving safe reinforcement learning problems such as avoiding obstacles with an autonomous car;
- · Leveraged model-based methods to plan safe actions and trained a safeguarding policy from these actions through imitation;
- · Improved performance with lower sample complexity compared to Constrained Policy Optimization;

HONORS AND AWARDS

2021 International Symposium on Medical Robotics Best Paper Award Finalist 2021 International Symposium on Medical Robotics Best Student Paper Award Finalist	Nov 2021 Nov 2021
2021 International Symposium on Medical Robotics Dest Student Paper Award Pinanst 2021 International Symposium on Medical Robotics NSF Travel Award	Oct 2021
University of Utah School of Computing Department Fellowship	$Aug \ 2020$
National Scholarship (top 2% of degree cohort)	Nov 2017 & 2018
Northeastern University Excellent Student (top 2% of degree cohort)	Dec 2017 & 2018
Runner-up in National Mathematical Modeling Competition in China	<i>Oct</i> 2017
First Place in Provincial Mathematical Modeling Competition	Oct.2017

SKILLS

Computer Languages	C/C++, MATLAB, Python (TensorFlow, PyTorch), Java, VHDL
Software & Tools	IsaacGym, ROS, Gazebo, PyBullet, HTML, LaTeX

SERVICE

ICRA 2023, CoRL 2023 Reviewer

Planning with Multi-Object Relations Using Graph Neural Networks May 2021 - Sep 2022

Jan 2019 - May 2020

Jan 2021 - Dec 2021