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Abstract— This article describes a Voronoi-based path
generation (VPG) algorithm for an energy-constrained mobile
robot, such as an unmanned aerial vehicle (UAV). The algorithm
solves a variation of the coverage path-planning problem where
complete coverage of an area is not possible due to path-length
limits caused by energy constraints on the robot. The algorithm
works by modeling the path as a connected network of mass-
spring-damper systems. The approach further leverages the
properties of Voronoi diagrams to generate a potential field
to move path waypoints to near-optimal configurations while
maintaining path-length constraints. Simulation and physical
experiments on an aerial vehicle are described. Simulated run-
times show linear-time complexity with respect to the number
of path waypoints. Tests in variously shaped areas demon-
strate that the method can generate paths in both convex and
nonconvex areas. Comparison tests with other path generation
methods demonstrate that the VPG algorithm strikes a good
balance between runtime and optimality, with significantly better
runtime than direct optimization, lower cost coverage paths
than a lawnmower-style coverage path, and moderately better
performance in both metrics than the most conceptually similar
method. Physical experiments demonstrate the applicability of
the VPG method to a physical UAV, and comparisons between
real-world results and simulations show that the costs of the
generated paths are within a few percent of each other, implying
that analysis performed in simulation will hold for real-world
application, assuming that the robot is capable of closely following
the path and a good energy model is available.

Note to Practitioners—For autonomous mobile-robotics-based
applications where a robot equipped with a tool or sensor is
required to survey an area for inspection, monitoring, cleaning,
and so on, effectively covering the area is desirable. However, for

Manuscript received January 21, 2020; revised April 29, 2020; accepted
June 15, 2020. This article was recommended for publication by Associate
Editor S. Rathinam and Editor K. Saitou upon evaluation of the reviewers’
comments. This work was supported in part by the University of Utah, in part
by the National Science Foundation’s Partnership for Innovation Program
under Grant 1430328, and in part by the U.S. Army STTR Program under
Grant W9132T-16-C-0001. (Corresponding author: Kam K. Leang.)

Katharin R. Jensen-Nau and Kam K. Leang are with the Design, Automa-
tion, Robotics and Control (DARC) Laboratory, Department of Mechanical
Engineering, University of Utah, Salt Lake City, UT 84112 USA, and also
with the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA
(e-mail: kam.k.leang@utah.edu).

Tucker Hermans is with the School of Computing, University of Utah, Salt
Lake City, UT 84112 USA, and also with the Robotics Center, University of
Utah, Salt Lake City, UT 84112 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2020.3016276

energy-constrained systems such as aerial vehicles with limited
flight time, complete coverage is not possible. Presented here
is a new Voronoi-based path generation algorithm that takes
energy constraints into account to generate waypoints for the
robot to follow in a near-optimal configuration while maintaining
path-length constraints. The approach is applied in simulation
and experiments for an application in environmental monitoring
using unmanned aerial vehicles.

Index Terms— Coverage path planning (CPP), mobile robot,
Voronoi-based path generation (VPG).

I. INTRODUCTION

COVERAGE path planning (CPP) is the process of plan-
ning a path that covers all points in an area [1] and has

application to robotics where a tool or sensor is displaced
or distributed to survey an area for inspection, monitoring,
cleaning, and so on. The research and application of CPP
is extensive, including uses for agriculture [2]–[4], structure
inspection [5], [6], floor cleaning [7], [8], terrain survey-
ing [9], [10], environmental monitoring [11] (see Fig. 1),
lawn mowing [12], demining [13], and industrial processes
such as painting or sanding [14]. The vast majority of prior
works assume that the robot will have enough available
energy to cover the entire area. Only recently have energy
usage and potential energy limitations been considered when
planning coverage paths [15]–[19]. Limited energy may lead
to partial area coverage; however, partial coverage can still
provide useful information if the planning process is executed
appropriately. Thus, energy-constrained CPP is an increasingly
important consideration with the proliferation of robots such
as multirotor unmanned aerial vehicles (UAVs) [20], which
tend to have short battery life, often less than 20 min when
carrying a sensor payload and computational hardware for
survey, inspection, and monitoring applications [11].

This article presents a Voronoi-based path generation (VPG)
algorithm that solves a variation of the CPP problem where
complete coverage of an area is not possible due to energy
constraints on the robot which limit the total path length. The
algorithm distributes path waypoints to achieve near-optimal
coverage given the path-length limitations, where the optimal
path is defined as one that gets as close as possible to every
point in the area, and a near-optimal path is one that is close
to the optimal path but not close enough to be considered
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Fig. 1. Three quadcopter aerial robots with chemical sensors scanning an
area to generate chemical concentration maps [11]. In this case, the source is
a simulated propane leak. CPP methods are important in such applications to
optimize the mapping process when robot flight time (energy) is limited.

Fig. 2. Example of a near-optimal partial coverage path created by the VPG
algorithm given a path-length constraint based on an energy model of a mobile
robot.

truly optimal. Fig. 2 shows an example of one such path.
The algorithm uses a model of the path as a connected
network of mass-spring-damper systems, in combination with
a Voronoi diagram, to generate a potential field that distributes
the path waypoints into a near-optimal configuration. Such an
algorithm has utility in applications, such as mapping chemical
concentrations [11] over an area of interest while accounting
for the highly limited battery capacity inherent in multirotor
UAV systems. As illustrated by the gas concentration mapping
example in Fig. 1, energy-constrained CPP is important to
ensure that the robot traverses the terrain in an optimal manner
while performing inspection/monitoring tasks. However, there
is limited work on optimizing coverage paths for partial
coverage of an area [6], [21].

The primary novelty of the proposed VPG method
is the dynamic path model consisting of a chained
mass-spring-damper system in combination with the use of
Voronoi diagrams to generate a potential field, which distrib-
utes preconnected path waypoints. In this method, the way-
points are represented as masses, and the forces acting on them
come from spring forces maintaining desired spacing between
neighboring waypoints, spring forces pulling the waypoints

toward the centroids of their Voronoi areas, and associated
damping forces. The VPG method produces near-optimal
coverage paths given path-length limitations due to energy
constraints on the robot, and, unlike most CPP methods, the
VPG method is designed to be able to easily account for
path-length limitations when generating the path. The use
of potential fields makes the method generalizable to both
convex and nonconvex areas with no modifications required
and allows the algorithm to generate its paths significantly
faster than direct optimization.

In the literature, a similar method using a combination
of Voronoi diagrams and potential fields is proposed by
Han et al. [22] for the purpose of deploying a wireless
sensor network (WSN). Since WSNs use large numbers of
sensors to provide coverage of an area, their focus is on
placing individual points representing sensors in their optimal
locations. A way of connecting the points into a path is
not necessary for them and is thus not considered, making
their method as presented not easily applicable to generating
coverage paths. Also, a path-planning method presented by
Soltero et al. [23] uses distances between the neighboring
waypoints and between waypoints and the centroids of their
Voronoi areas for optimizing coverage paths. However, their
method uses a cost function based on those distances and
creates a gradient descent-based velocity controller to move
the path points to their optimal locations. Their method
considers a set number of waypoints with variable spacing
between them, so while it does generate good paths in the
absence of path-length constraints, it is difficult to impose
those constraints on the paths it generates. It is pointed out
that extensive work on trajectory optimization for various
applications can be found in the literature (see [24], [25]).
The proposed VPG method, in contrast, is designed to easily
account for path-length constraints.

There are three main contributions of this work. First is the
development of a Voronoi-based algorithm that helps solve the
issue of path planning for an energy-limited mobile robotic
sensor system by generating near-optimal length-constrained
coverage paths. Second is the detailed simulation and char-
acterization of the algorithm to study its performance and
compare it with other path generation algorithms. Third are the
physical experiments performed to validate the applicability of
the algorithm on a real-world mobile robotic platform, such
as the quadrotor UAV described in [11]. Overall, simulation
results show that the algorithm has distinct advantages over
other path generation methods in the partial coverage sce-
nario, with good runtimes, scalability, and path costs. Also,
results from physical experiments show that the algorithm
can successfully be applied to a real-world mobile robotic
platform and that the physical experimental results are in good
agreement with simulation results.

II. RELATED PRIOR WORKS

A. Coverage

In general, the problem of area coverage is defined as getting
a sensor or sensors to take measurements that cover an area
or getting a tool or tools to perform a task covering an area.
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This article specifically considers applications that involve area
coverage with sensors. Methods for sensor coverage of an
area can be grouped into two broad categories. One category
is coverage using networks of many sensors that remain
stationary, each taking measurements in one location. The
other category, which is the focus of this article, is coverage
using a single or a small number of mobile sensors that follow
a path within an area taking measurements in multiple places.

1) Coverage With Sensor Networks: WSNs are networks of
stationary sensors distributed over an area. Coverage is one
of the main uses of WSNs, and how to best distribute the
sensors is an important consideration [26], [27]. Algorithms
for distributing WSNs generally try to place sensor nodes in
a way that maximizes area coverage. One common method
is the potential field approach. For example, a potential field
is proposed in [28] that causes the sensors to repel each
other and spread out over an area. In [29], three methods are
presented that use Voronoi diagrams of nodes to find coverage
holes and potential field methods to pull the nodes toward
the coverage holes. The vector-based algorithm (or VEC for
short) simply repels each node from its Voronoi neighbors, the
Voronoi-based algorithm (VOR) pulls nodes to their farthest
Voronoi vertex, and Minimax pulls nodes toward the point
that minimizes the distance to their farthest Voronoi vertex.
Likewise, in [22], a potential field pulls nodes to the centroids
of their Voronoi areas while repelling them from neighboring
nodes. The main effect of these various potential field methods
is that the nodes spread out fairly evenly and approach uniform
coverage of the area. Other recent work in this area focuses
on bioinspired methods, such as the bee colony algorithm
used in [30] or the immune algorithm described in [31].
While WSNs are not the focus of this article, some of their
distribution methods can be useful for distributing waypoints
in a path, as will be discussed further in Section II-B.

2) Coverage Path Planning: CPP encompasses all methods
of having one or several mobile sensors cover an area by
following a path. CPP methods for single robots have been
studied extensively and can generally be divided into classes
based on how they decompose the area [1]. One class, called
grid-based decomposition, involves discretizing the coverage
area into a grid and planning a path that visits each grid cell.
The other common class, called cellular decomposition, uses
an exact cell decomposition to divide the area into cells that
can then be covered by a back and forth lawnmower-style
pattern. The order in which to visit the cells is found by solving
a traveling salesman problem on their adjacency graph.

CPP algorithms using grid-based decomposition include
spiral spanning trees [32] [see Fig. 3(a) for an example],
a wavefront algorithm based on distance transforms [33],
and an adaption of the D* path-planning method [34]. Some
work has also been done with different grid discretizations,
including triangles [35] and fractal-based decompositions [36].
An optimization method is proposed in [9], which uses a
depth-limited search and tries to minimize the turn angles
along the path. Another optimization method using a genetic
algorithm with path templates is given in [37]. Grid-based
methods have the advantage that it is easy to represent grids
and mark whether cells have been covered. However, they

Fig. 3. Example coverage paths. (a) Coverage path that would be generated
with the spiral spanning-tree method [32], which uses grid-based decomposi-
tion. The thin black lines make up the grid, the thick black line is the spanning
tree, and the blue line is the coverage path. (b) Coverage path that would be
generated with the boustrophedon decomposition method, which uses cellular
decomposition [38]. The solid black lines are the area boundaries, the dashed
lines are the cell decomposition lines, and the blue line is the coverage path.

only give approximate decompositions of the area and can
require prohibitively large amounts of memory for large areas
or fine-resolution grids.

Common cellular decomposition methods include, for
example, boustrophedon decomposition [38] [see Fig. 3(b)
for an example] and Morse-based decomposition [39]. Opti-
mization of these methods tends to involve choosing the cell
decomposition and path direction that minimize the number of
turns that the covering robot must make [4], [40], [41]. Online
methods that build the adjacency graphs incrementally have
been proposed in [42] and [43]. A method is described in [44]
for general 3-D surfaces. Compared with grid-based decom-
position methods, cellular decomposition methods require sig-
nificantly less memory, but with the tradeoff that covering
individual cells becomes more complicated.

3) Energy-Constrained Coverage: While both grid-based
and cellular decomposition CPP methods work well for com-
plete area coverage, they do not consider the case where the
robot is not capable of covering the entire area due to limited
energy, which is of particular concern when path planning
for UAVs [20]. The most common way to deal with energy
constraints is to add more robots and partition the area such
that no robot is assigned a larger area than it can cover [45],
[46]. Multiagent CPP is a vast field of research in and of itself,
but a few methods include partitioning the areas using Voronoi
diagrams [47], [48], using multiple spanning trees [49], [50],
and applying genetic algorithms [51], [52]. While some recent
work has been done to optimize single-robot coverage paths
with respect to energy consumption [15]–[19], most methods
still require that the robot has enough power to completely
traverse the path. Papachristos et al. [21] proposed a coverage
method for inspecting multiple structures that assigns an
importance weight to each structure and finds a coverage
path that maximizes the inspection reward, allowing for some
structures to be left uncovered if their UAV’s flight time
constraints do not allow full coverage. The CPP method
presented in [6] for 3-D structure inspection allows for partial
coverage if it would result in significant energy savings, using
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Fig. 4. Illustration of one iteration of the path generation process. (a) Path
(blue line) defined by waypoints (blue dots), with the starting point marked
with an “S.” (b) Algorithm draws a bounded Voronoi diagram using the path
waypoints. (c) Centroids of the Voronoi polygons (green dots) are found.
(d) Waypoints are displaced, by forces pulling the waypoints toward the
centroids and intrawaypoint forces, from the location marked by the dashed
line to the location marked by the solid line. The process repeats until all
waypoints converge to their final locations.

multiobjective optimization with respect to both coverage and
energy consumption.

B. Point Distribution for Path Planning

A path can be generated by defining it as a sequence of
waypoints that the robot must visit in a specified order. One
possible way of creating a partial coverage path could be by
optimally distributing the points and then connecting them.
The WSN deployment algorithms described in Section II-A1
could be used for waypoint distribution since they are designed
to place the points in a configuration for optimal coverage.
However, optimally connecting the points into a path can be
difficult. Finding the shortest path to connect a collection of
points is a well-studied combinatorial optimization problem
called the traveling salesman problem. It is an NP-hard prob-
lem, and a large body of research exists in finding feasible
solutions [53]. However, a simpler solution is to distribute
points that are already connected to a path. This idea is used
in [23], which begins with a preconnected coverage path. The
method is designed for a robot to patrol a particular area of
interest based on sensor knowledge of the area, representing
how interesting different parts of the area are as a density
function. The method tries to put path waypoints at the centers
of mass of their Voronoi areas based on that density function
while also reducing the distance between waypoints. It opti-
mizes the path with a gradient descent-based controller using
a cost function that combines the distances between waypoints
and their Voronoi centroids and the distances between the
neighboring waypoints and directly controlling the velocity.

C. Advantages Over Current Methods

Unlike the CPP methods discussed in Section II-A2, the
method proposed in this article treats the path as a dynamic

system, allowing the path to essentially distribute itself to
provide the best coverage it can to an area given its specified
path length. The method is not dependent on the area geometry
and does not require decomposing the area into cells or grids,
eliminating the need to decide how to visit and cover those
cells or grid spaces in an optimal way with a path-length
constraint. Treating the path as a dynamical system and
allowing it to self-distribute based on a potential field also
makes it unnecessary to use time-consuming direct optimiza-
tion methods. The VPG algorithm also does not require any
additional adjustments or considerations to work in nonconvex
areas of interest as well as in convex areas.

The most conceptually similar method to the proposed
Voronoi-based path distribution algorithm is the method pre-
sented by Soltero et al. [23]. One primary difference between
the two methods is in how the waypoints’ movements are
controlled. Unlike the Soltero method, the method presented
in this article models the path as a chained mass-spring-
damper system, with springs connecting waypoints to their
neighbors and to the centroids of their Voronoi areas. The
points are moved based on the spring forces and a viscous
damping force. The main advantage of this force model over
the gradient descent-based control model used in [23] is that
it eliminates the need to take any area integrals, which the
Soltero method requires due to the use of a nonuniform density
function over the area. The VPG algorithm is intended to be
used for mapping an area given no prior knowledge of the area
and thus can use a simple equation for finding the centroid of
a polygon instead of taking an integral to find the centroid.
Numerical area integration is slow, so eliminating the need to
do so speeds up computations considerably. In addition, the
Voronoi-based path distribution method is designed to easily
account for path-length limitations imposed due to energy
constraints. Since the Soltero method does not consider energy
constraints, the method has no need to consider how to control
the path length. As a result, the only way to do so is to change
weightings in the computation of the cost function, which
must either be tuned for individual areas and path lengths
or changed iteratively until the path-length constraint is met.
Either method adds additional time and effort into applying
this method to an energy-constrained problem, in which the
VPG method avoids by being designed with energy constraints
in mind.

III. PATH GENERATION ALGORITHM

The energy-constrained VPG algorithm is described next
and applied to an aerial robot moving a sensor for mea-
surement over an area of interest. In the most generic case,
kinematic constraints on the motion of the robot may limit its
ability to precisely follow a generated trajectory, and optimal
control may be used to ensure that the path is one that the
robot can follow. However, the kinematics of a quadrotor
UAV allows several simplifying assumptions to be made.
It is assumed that the path can be defined by a sequence of
waypoints. The acceleration and velocity profiles for the robot
when moving between waypoints are assumed to be consistent
such that the same amount of energy is consumed traveling
between two different pairs of points the same distance apart.
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Fig. 5. Flowchart illustrating the high-level VPG algorithm process.

Rotations are assumed to use approximately the same amount
of energy regardless of angle, and the robot is assumed to
be able to turn sharply enough to closely follow the path.
The number of waypoints on the path is then based on
the maximum allowable energy usage, the desired distance
between path waypoints, the amount of energy required to fly
that distance in a straight line, and the average energy used
when turning.

A. Algorithm Overview

At a high level, the VPG algorithm works as follows, where
Fig. 4 shows an example of one iteration process and Fig. 5
shows a flowchart of the path generation process.

1) Start with a randomly generated sequence of path way-
points where adjacent waypoints are separated by the
desired spacing and the path does not cross itself.

2) Draw a Voronoi diagram based on the locations of the
waypoints.

3) Compute the centroid of each Voronoi polygon.
4) Set the resultant force acting on each waypoint to the

sum of spring forces attracting or repelling the waypoint
to the desired distance from its adjacent waypoints,
a spring force attracting the waypoint toward the cen-
troid of its associated Voronoi area, and a viscous
friction force.

5) Use the force from the previous step to compute new
positions for each waypoint.

6) Repeat steps 2–5 until the path converges.
7) If the path is too long, increase the ratio of the spring

constant maintaining waypoint spacing to the spring

constant pulling waypoints toward the centroids and
repeat steps 2–6.

B. Determining Total Path Length and Number of Waypoints

The VPG algorithm requires the number of path waypoints
as an input, which means that the number of waypoints must
be determined prior to running the algorithm. The waypoints
are all spaced a user-defined distance dw away from their
adjacent waypoints in the path. If there are n total waypoints,
the path length is given by

ltotal = (n − 1)dw. (1)

The maximum possible path length depends entirely on
the energy consumption of the particular robot being used.
In general, computation of the path length requires a function
fm(d, v) that gives the energy used to travel a distance d
with a velocity v, a function fr (t) that gives the energy
consumed when resting for an amount of time t , and an
average energy used when rotating, et . Assuming a consistent
travel velocity vt and spacing dw between each pair of adjacent
path waypoints, em = fm(dw, vt ) will be a constant. The robot
is assumed to stop at each waypoint for the same amount of
time tr , so er = fr (tr ) will also be a constant. If there are n
total waypoints, the energy epath consumed as the robot travels
along the path is

epath = n(et + er )+ (n − 1)em . (2)

If the total energy capacity etot is known, the number of
possible waypoints can be found by setting epath ≤ etot and
solving for n, resulting in

n ≤ etot + em

em + er + et
. (3)

The maximum possible number of waypoints will be the
largest integer satisfying (3).

C. Voronoi Diagram Generation

The first step in the main loop of the VPG algorithm is
to create a Voronoi diagram based on the path waypoints.
A Voronoi diagram is a method of dividing an area given a set
of discrete points or sites, such that each site is associated with
one subarea and all points in that site’s subarea are closer to
it than to any other site. Mathematically, given a set of sites
S = {s1, s2, . . . , sn}, where si ∈ R

2, the Voronoi area Vj

associated with site s j can be defined as

Vj = {x ∈ R
2 | �x − s j� ≤ �x − si�,∀i �= j}. (4)

The algorithm presented in this article generates a Voronoi
diagram using the associated Delaunay triangulation. The
Delaunay triangulation for a set of points S connects them
into nonoverlapping triangles such that the circumcircle of
any triangle does not contain any of the other points. The
circumcenters are the vertices of the Voronoi diagram, and
the vertices of Voronoi polygon Vj are the circumcenters of
all Delaunay triangles that have point s j as one of the vertices.

Because the VPG algorithm has a particular area of interest
to cover, the Voronoi diagram must be bounded to that area.
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Fig. 6. Illustration of (a) unbounded Voronoi diagram and (b) bounded
Voronoi diagram, where the red dashed line represents the area the Voronoi
diagram is being bounded to.

This means that for each Voronoi polygon that extends beyond
the area boundary, the vertices that lie outside the boundary
are replaced with the Voronoi polygon’s intersection points
with the boundary edge and any boundary corners between
those intersection points, as shown in Fig. 6.

D. Optimality

The goal of the algorithm is to generate a coverage
path that will best cover an area if only partial coverage
can be achieved. For many coverage problems, this means
attempting to maximize coverage. However, when considering
path-length constraints, maximizing coverage only ensures
that the path does not overlap itself. It does not consider
that there may be two paths that achieve the same amount
of coverage—by meeting the path-length constraint and not
overlapping themselves—but still achieve different qualities
of coverage. An example of this idea is shown in Fig. 7.
If the sensor footprint is smaller than the smallest spacing
between the lines of the path, both of these paths will cover the
same amount of area, but with different quality of coverage.
In Fig. 7(a), sensor measurements taken along the coverage
path will provide very good information about the left side of
the area but none about the right side. In Fig. 7(b), sensor
measurements taken along the coverage path will provide
moderately good information over the entire area. It is assumed
that having moderately good information over the entire area
is better than having very good information in one part of the
area and no information in another part. To this end, a cost
function is imposed that when minimized results in a path
more similar to Fig. 7(b) than 7(a) since Fig. 7(b) gets closer
to all points in the area than Fig. 7(a). Thus, given R ⊂ R

2

as the area of interest, if P = {p1, p2, . . . , pn}, pi ∈ R is a
set of n waypoints defining the path, the total cost is

J (P) =
∫∫

R
min

pi
�x − pi�d A (5)

where x is a point represented by a vector [x, y]T ∈ R, d A
is the differential area dydx , and � · � is the L2-norm. This
expression sums the distances between every point x ∈ R
and its closest waypoint. Applying cost J (P), the problem
becomes finding the optimal locations of all of the path

Fig. 7. Rationale behind the choice of cost function, if the goal is to get the
best coverage of the entire area. (a) If sensor measurements are taken along
the coverage path, there will be a lot of information about the right side of
the area but absolutely no information about the left side. (b) Better coverage
path of roughly the same length, where the path gets closer to all points in
the area, and thus, taking sensor measurements along the path will give a
moderate amount of information about the entire area.

waypoints P∗, where

P∗ = argmin
P

J (P) (6)

subject to the constraints

�p j − p j−1� = dw, j = 2, 3, . . . , n (7)

�p j+1 − p j� = dw, j = 1, 2, . . . , n − 1. (8)

The difficulty with optimizing this cost function is that it is
expensive to compute and requires numerically computing an
area integral, which in turn requires computing for every point
in the area the inner minimization that finds its closest path
waypoint. However, it is possible to leverage Voronoi diagrams
to simplify the problem.

To begin, consider a single point p in a polygonal area. For
this particular case, the location of p that minimizes the cost
function is the centroid of the polygon, which can be computed
using

cx = 1

6A p

nv−1∑
i=0

(xi + xi+1)(xi yi+1 − xi+1 yi ) (9)

cy = 1

6A p

nv−1∑
i=0

(yi + yi+1)(xi yi+1 − xi+1 yi ) (10)

where cx and cy are the x- and y-coordinates, respectively,
of the centroid, nv is the number of polygon vertices, and A p

is the signed area of the polygon, which is defined as

A p = 1

2

nv−1∑
i=0

(xi yi+1 − xi+1 yi ) (11)

with (x0, y0) being the same vertex as (xnv , ynv ). The vertices
are numbered in order around the polygon.
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Next, consider a set of multiple unconnected waypoints.
In this case, the cost function uses the distance between each
point x ∈ R and its closest waypoint p j . If Vj is the Voronoi
area associated with p j , then by definition, x ∈ Vj . Given this,
the cost function can be rewritten as

J (P) =
n∑

i=1

(∫∫
Vi

�x − pi�d A

)
. (12)

Minimizing each individual term of the sum will minimize
the entire cost, and due to the nature of Voronoi diagrams,
each individual term of the sum is simply the case of a single
point in a polygonal area. For a set of unconnected points,
if the centroid of Voronoi area Vj is denoted cVj , the optimal
configuration for the set of waypoints thus becomes the one
where p j = cVj , ∀p j ∈ P .

For a sequence of connected waypoints, adjacent points in
the path must be kept evenly spaced a distance dw apart,
making each waypoint p j subject to the constraints (7) and (8).
The optimal configuration becomes the one that gets the
closest to the optimal configuration for unconnected waypoints
while maintaining the constraints. The optimization problem
can then be rewritten as finding P∗ such that

P∗ = argmin
P

n∑
i=1

�pi − cVi� (13)

subject to the constraints (7) and (8).

E. Potential Field

Directly optimizing the path based on the cost function
and constraints from Section III-D requires numerically taking
an area integral, which is a time-consuming process if the
integral is to be computed with a small enough resolution
for any reasonable accuracy. To avoid taking that integral and
thus speed up the algorithm, a potential field method is used
to move the connected path waypoints toward the optimal
configuration described in Section III-D. To create the forces
for the potential field, the path is modeled as a chained mass-
spring-damper system. The locations of the masses are the
waypoints, there are springs between the adjacent waypoints
and their Voronoi centroids, and there is a viscous damping
element between the waypoints and ground. Fig. 8 shows a
small-scale system model. The force applied to each waypoint
p j is defined as

f j = fp j−1 + fp j+1 + fc j + fb j (14)

where fc j is an attractive force toward cVj , fb j is a viscous
damping force, and fp j−1 and fp j+1 are the spring forces
that try to maintain the constraints (7) and (8), respectively.
A diagram showing these forces on the small-scale system
model is shown in Fig. 9.

The forces are defined as follows:
fc j = kc(cVj − p j ) (15)

fp j−1 = k p(�r j−1� − dw)
r j−1

�r j−1� (16)

fp j+1 = k p(�r j+1� − dw)
r j+1

�r j+1� (17)

fb j = −bṗ j (18)

Fig. 8. Illustration of how the path is modeled as a mass-spring-damper
system.

Fig. 9. Free body diagram for a path modeled as a mass-spring-damper
system.

where r j−1 = p j−1−p j and r j+1 = p j+1−p j , b is a damping
coefficient, and kc and k p are spring constants associated
with the centroid and the neighboring waypoints, respectively.
In the special cases of the endpoints, there is only one adjacent
waypoint, which means that for p1, the force fp j−1 = 0, and
for pn , the force fp j+1 = 0.

To determine the movement of each waypoint, the acceler-
ation for each is calculated using

p̈ j = f j

m
(19)

where m is the mass value assigned to the waypoints. The
differential equation (19) can then be solved numerically using
Euler’s method to find the next velocity ṗ j and position p j

for each waypoint.

F. Path Generation Summary

Putting together all of the elements discussed in this section,
the energy-constrained VPG algorithm works as follows.
To begin, an initial random path is generated, with the way-
points spaced to satisfy constraints (7) and (8). In addition,
to avoid local optima caused by the path crossing itself, the
algorithm ensures that the initial path does not cross at any
point. The algorithm then loops through several actions. First,
it draws a Voronoi diagram based on the current waypoint
locations, as described in Section III-C. Next, it computes the
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centroids of the Voronoi polygons using (9) and (10). Then,
it calculates the force on each waypoint based on (14)–(17).
The acceleration of each particle is found using (19), and
the resulting differential equation is numerically solved using
a 0.01-s time step to get the position and velocity of each
waypoint at the next time step. This process repeats until
the system converges, defined as all points moving less than
1/1000th of the largest dimension of the area at any given
time step. The path length ltotal is computed when the system
converges, and if it is too long, the ratio between kp and
kc is doubled. The algorithm finishes when the system has
converged and the path meets the length constraint. The full
VPG algorithm is given as follows.
1: Initialize P to a random path
2: Initialize pi ← 0, ∀pi ∈ P
3: Initialize krat io ← 10 {krat io ≡ kp

kc
}

4: while ltotal > dw(n − 1) do
5: kc ← k p/krat io

6: b←√kc/2
7: while P.NotConverged() do
8: V ← P.GetV oronoi Diagram()
9: C ← V .FindCentroids

10: for all p j ∈ P do
11: f j ← Eq. (14)
12: ṗ j ← f j

m �t + ṗ j,prev

13: p j ← ṗ j�t + p j,prev

14: if p j .NotInArea() then
15: Find crossed boundary edge e
16: ṗ j ← e.Find ParallelV eloci tyComponent ()
17: p j ← ṗ j �t + p j,prev

18: end if
19: end for
20: end while
21: Multiply krat io by 2
22: end while
23: return P

IV. SIMULATIONS AND RESULTS

Simulations are presented to assess the performance of
the VPG algorithm, beginning with several examples of the
sorts of paths that the algorithm generates in both convex
and nonconvex areas. Tests are performed to characterize the
time complexity of the algorithm as the number of waypoints
increases and to compare the algorithm to other path gen-
eration methods, looking at the runtimes of the algorithms
and the optimality of the paths they generate. The simulations
assume that an arbitrary energy model has already been used
to determine the number of waypoints, which is used as the
input to the algorithms. All simulations were programmed and
run using MATLAB R2013a on a Dell Inspiron 7559 Laptop
running Windows 10 with an Intel Core i5 6300HQ CPU
and 8 GB of RAM. The built-in MATLAB delaunayTrian-
gulation class is used to generate the Delaunay triangulations
used in creating the Voronoi diagrams. For the best algorithm
performance, the values of kc, k p, and b are set to 900 N/m,
9000 N/m, and 15 N ·s/m, respectively, assuming unit masses.

Fig. 10. Path generated using a 2 m × 2 m area and 30 waypoints with
the spacing of 0.2 m. (a) Initial waypoint locations. (b) Final path with the
starting point marked with an “S.”

A. Path Generation Examples

In the first example, the algorithm was run in a 2 m × 2 m
square using 30 waypoints with a spacing of 0.2 m. The initial
locations of the waypoints for the path are shown in Fig. 10(a).
The system converged to the path shown in Fig. 10(b). If the
cost function is computed numerically, discretizing the square
into a 75 × 75 cell grid when taking the area integral, the
total cost of the generated path is 1032.

The remaining examples show the paths generated with both
convex and nonconvex polygonal areas of interest, illustrating
the ability of the algorithm to generate paths in both types
of polygons. Fig. 11 shows these paths. Each was generated
using 20 waypoints, with the same waypoint spacing for all.

B. Algorithm Characterization

Several different types of tests were run in simulation to
characterize the VPG algorithm. One set of tests was used to
determine the time complexity of the algorithm with respect
to the number of waypoints in the path. Another set of tests
was run to compare the algorithm runtime and optimality
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Fig. 11. Examples of paths generated by the VPG algorithm in both convex
and nonconvex polygons, using 20 waypoints. Start points are denoted with
an “S.”

of the VPG algorithm against three other path generation
methods. The first comparison method is the method described
by Soltero et al. [23]. This method was chosen because it is
conceptually the most similar to the method presented in this
article. However, due to the fact that the Soltero method does
not allow direct control of the path length, a slight modification
was added to iteratively change the weights in the cost function
to ensure that the final path would meet the length constraints.
The amount by which to change the weights each iteration to
ensure that the fastest convergence was determined by trial-
and-error. Because no initial information about the area of
interest is assumed, the density function is set as a uniform
density. The second comparison method is direct optimization
using MATLAB’s built-in active set algorithm provided by the
function fmincon. This method was chosen both to provide a
baseline for the true optimal path because direct optimization
is one obvious solution to the problem of generating an optimal
partial coverage path. The third path generation method is
simply adding a lawnmower-type path to the area, with the
optimal sweep direction chosen as described in [41] and
with even spacing between the sweep lines. This method was
chosen because it is commonly used for generating coverage
paths, with much of the work in CPP involving creating these
sorts of coverage paths for a variety of areas and applications.

1) Time Complexity: To determine the time complexity of
the VPG algorithm, it was run in a 2 m × 2 m box for paths
with numbers of waypoints ranging from 5 to 100, with the
same waypoint spacing regardless of a number of waypoints.
One-hundred trials were run for each different number of
waypoints, and both the total time to converge and the number
of iterations required to converge were recorded and used to
compute the average runtime per iteration. The results are
presented in Fig. 12, showing that as the number of points
increases, the time per iteration increase appears to be linear.

2) Optimality Comparison Tests: To assess the optimality of
the VPG algorithm, it was compared with the three previously
described comparison methods. Five different path lengths
were tested, in a 75 m × 100 m box, using different numbers
of waypoints but the same waypoint spacing of 5 m. All
algorithms were run ten times for each number of waypoints.
For the iterative algorithms, all three used the same initial
randomly generated path for a given trial, with a different
initial path generated for each trial. The cost function was
computed over the final path, and the average path cost was

Fig. 12. Average runtime per iteration for different numbers of waypoints
in a path.

Fig. 13. Costs of the final paths generated by (a) fmincon, (b) VPG method,
(c) Soltero method, and (d) lawnmower path generation method, normalized
by the cost of the actual optimal path for each number of path waypoints,
which is assumed to be the lowest cost path found by direct optimization.

computed for each method for each number of path waypoints.
The cost of the true optimal path for each number of waypoints
was assumed to be the lowest cost found by the direct
optimization, and the average costs for each different number
of waypoints were normalized by that optimal cost. The results
are shown in Fig. 13. The VPG algorithm-generated paths
between 45% and 55% closer to the optimal cost than the
method in [23] and between 62% and 83% closer to the
optimal cost than the lawnmower path generation.

The standard deviations of the path costs for each method
for each number of waypoints, normalized by the optimal path
cost, are shown in Table I. Note that the lawnmower path
generation method is not included in this table because it is a
deterministic method, so its standard deviation is zero.
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TABLE I

STANDARD DEVIATIONS OF THE PATH COSTS NORMALIZED BY THE
OPTIMAL PATH COST FOR EACH NUMBER OF WAYPOINTS, FOR

THE VPG METHOD, THE SOLTERO METHOD, AND

DIRECT OPTIMIZATION

Fig. 14. Average total times to converge for (a) fmincon, (b) VPG method,
(c) Soltero method, and (d) lawnmower path generation method for different
numbers of path waypoints.

3) Runtime Comparison Tests: The total time required to
converge was also measured for each method in the trials
described in Section IV-B2, and the average convergence
time for each number of waypoints using each method was
computed. The results are shown in Fig. 14.

V. PHYSICAL EXPERIMENTS AND RESULTS

This section describes the details of the experiments to test
the applicability of the VPG algorithm to a real-world mobile
robotic platform, as well as to determine how the simula-
tion results compare to physical tests. The path generation
tests are described, and the results of those experiments are
given. First, it is pointed out that the physical experiments
were run on the Enif autonomous chemical-sensing aerial
robot platform, where full details of the vehicle, command
station, and software are described in [11] (see Fig. 15). The
robot system was designed for autonomous chemical-source
mapping and localization. Because of this, the vehicle was
optimized for maximizing flight time, to allow it to cover and
map large areas. The vehicle has a 50-cm carbon fiber frame
and can carry two lithium-polymer batteries. It has a GPS
for position tracking, a LiDAR sensor for collision avoidance,
and a high-performance Mass Property Spectrometer (MPS,

Fig. 15. Enif autonomous chemical-sensing UAV [11] photographed during
an in-flight path generation test. Image also shows key components of the
system.

Nevada Nano Tech) chemical sensor for airborne chemical
detection. It uses a DJI A3 flight controller integrated with an
Odroid C2 single-board computer to run everything necessary
for autonomous flight. For the gross vehicle weight of 2.95 kg,
the vehicle can hover for approximately 45 min [11].

While the platform is capable of flying with up to two
batteries, one battery was used for the tests in this section,
so the platform achieved approximately 30 min of flight
time for each test. The VPG algorithm was programmed in
C++ to interface with the robot operating system (ROS)
running on the robot, which is used to communicate between
the different algorithms that control the Enif platform. The
MATLAB version of the VPG algorithm used the built-in
MATLAB delaunayTriangulation function, which is not avail-
able in C++, so it was replaced with an open-source Delaunay
triangulation program [54].

A. Path Generation Tests

To test the performance of the path generation algorithm on
the robot platform and to evaluate the applicability of simula-
tion results to the real world, the VPG and lawnmower path
generation algorithms were tested in two different areas. The
first area, shown in Fig. 16(a), is a 20 m × 40 m2. The second
area, shown in Fig. 16(b), is a roughly 150 m × 80 m trape-
zoid. Both areas were chosen because they were accessible
for flight testing, open and relatively flat. Both a rectangular
and a nonrectangular area were chosen to demonstrate paths
for different shapes as well as sizes. After each test, the total
path costs were computed based on the actual path flown.
Due to the long convergence times for the Soltero and direct
optimization methods used in the simulation tests, they were
not used as comparison methods in the physical tests.

As a means to compare results, each real-world flight test
was also run in simulation. The GPS coordinates of the
polygon corners were extracted from the flight test data,
converted to coordinates in meters, and passed to the VPG
algorithm in simulation, along with the associated waypoint
spacing and a number of waypoints. The path costs were
analyzed in the same way as the costs of the real-world flight
paths, to provide a quantitative comparison between simulation
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Fig. 16. Overhead view of (a) first flight test area (small area) and (b) second
flight test area (large area), as seen from Google Maps.

Fig. 17. Gaussian plume model in (a) small and (b) large areas.

and reality. Based on the experimental characterization of the
energy model for the Enif platform, the values of etot and et

for (3) were determined to be 115 and 0.0653 Wh, respectively.
To provide an illustration of how the paths would be used for

sensing a chemical plume, the generated paths were overlaid
on a standard Gaussian model of the chemical concentrations
in a gaseous plume. The Gaussian plume model captures the
spatial variation of the chemical concentration [55], [56]. Col-
ormaps of the concentration readings were generated, going
from blue to red as concentration increases. The plume in the
small area is shown in Fig. 17(a). The plume in the large area
is shown in Fig. 17(b).

1) Small Area Experiments: In the first smaller flight test
area, the waypoint spacing was chosen to be 1 m. The wait
time at each waypoint was set to 15 s, based on the time
it takes the chemical sensor on the Enif platform to take
a good reading. From experimental characterization of the
energy model for this particular platform, em = 0.0708 Wh for
a 1-m waypoint distance and er = 1.025 Wh for a 15-s wait
time. Using (3), the number of path waypoints was determined
to be 99. Both the VPG method and the lawnmower path
generation method were each tested three times in both the real
world and simulation. For each physical test, the Enif platform
generated its path and then flew along the path until the
low-battery safety feature automatically landed the platform.
The GPS coordinates of the flight path and the area polygon
corners were recorded. Postprocessing was performed on the

TABLE II

AVERAGE COSTS OF THE PATHS GENERATED IN SIMULATION, THE
AVERAGE COSTS OF THE ACTUAL FLIGHT PATHS FLOWN, AND THE

PERCENT DIFFERENCES BETWEEN THEM FOR THE FIRST AREA

Fig. 18. Flight paths from small area experiments. (a) Flight path flown
by the chemical-sensing robot platform during real-world testing based on
the path generated using the VPG method. (b) Flight path based on the
generated lawnmower path. (c) Concentrations of the Gaussian plume along
the flight path generated using the VPG method. (d) Concentrations along the
lawnmower flight path.

GPS coordinates to convert them to locations in meters. There
was no easy way to reliably detect where the platform had
stopped at a waypoint based only on the raw numbers, but
the waypoint locations were obvious when the flight path was
plotted, so the MATLAB data tip tool was used to carefully
select and save each waypoint location. Once the waypoints
were extracted, the costs of the paths were determined and
averaged. The costs of the simulated paths generated with the
same input parameters were also determined and averaged.
The results are shown in Table II. One of the real-world flight
paths generated with the VPG method is shown in Fig. 18(a).
A real-world lawnmower flight path is shown in Fig. 18(b).
The concentration maps that each of these paths would have
generated are shown in Fig. 18(c) and (d).

2) Large Area Experiments: In the second, larger flight
test area, the waypoint spacing was chosen to be 1.7 m,
just above 1% of the largest area dimension, which has been
found through qualitative testing to be roughly the lower limit
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TABLE III

COSTS OF THE PATHS GENERATED IN SIMULATION, THE COSTS OF THE
ACTUAL FLIGHT PATHS, AND THE PERCENT DIFFERENCES

BETWEEN THEM FOR THE SECOND AREA

Fig. 19. Flight paths from large area experiments. (a) Flight path flown
by the chemical-sensing robot platform during real-world testing based on
the path generated using the VPG method. (b) Flight path based on the
generated lawnmower path. (c) Concentrations of the Gaussian plume along
the flight path generated using the VPG method. (d) Concentrations along the
lawnmower flight path.

for waypoint spacing before the difference in the stiffnesses
of the modeled springs between the adjacent waypoints and
between the waypoints and their Voronoi polygon centroids
to begin to cause difficulties with path convergence. The wait
time at each waypoint was set to 4 s, based on the time it
takes the Enif platform to come to a complete stop and take a
measurement, assuming that it uses a faster generic sensor. For
these tests, em = 0.120 Wh for a 1.7-m waypoint spacing and
er = 0.273 Wh for a 4-s wait time. Using (3), the number of
path waypoints was determined to be 250. As with the smaller
area, the Enif platform generated its path and then flew along
it until it was forced to land by the built-in safety feature. The
same postprocessing of the flight path data was performed,
converting the GPS coordinates into meters, plotting the flight
path, extracting the waypoint locations, and determining the
path costs. The costs of the paths generated in simulation using
the same input parameters were also determined. The results
are shown in Table III. The flight path generated with the VPG
method is shown in Fig. 19(a). The lawnmower flight path is
shown in Fig. 19(b). The concentration maps that each of these
paths would have generated are shown in Fig. 19(c) and (d).

VI. DISCUSSION OF RESULTS

A. Algorithm Characterization

The results of the simulations show that the VPG algorithm
strikes a good balance between optimality and runtime. It is
able to generate near-optimal paths while still running quickly
enough to be usable for planning on a mobile robot in the
field. In addition, as shown in Fig. 11, the method is capable of
generating paths in both convex and nonconvex areas without
having to make adjustments to the algorithm.

1) Runtime Results: As can be seen in Fig. 12, the time
complexity of the VPG method appears to be linear. This
allows the method to extend to relatively large numbers of
points before hitting the upper limit where it becomes pro-
hibitively slow to run. While absolute runtimes will obviously
differ somewhat depending on the hardware of the mobile
robot, the fact that the runtimes are on the order of seconds
for the VPG method is promising for the ability of a mobile
robot to run the algorithm on its own hardware in the field.

As shown in Fig. 14, it would be practically impossible to
run direct optimization on a mobile robot in the field for large
numbers of path waypoints. It would be difficult to run the
Soltero method with iteratively changing weights on a mobile
robot in the field without some efficiency improvements, but it
is possible that such improvements could be made. However,
based on the data in Fig. 14, the VPG algorithm runs an order
of magnitude faster and will thus be easier for a mobile robot
to use. The lawnmower path generation method is the only
tested method faster than the VPG algorithm, likely due to
the lack of iteration or complex computation required by the
algorithm. However, this is only guaranteed to be the case
for a convex area, as applying lawnmower-style paths to a
nonconvex area becomes significantly more complex, likely
involving methods similar to boustrophedon decomposition
methods for CPP, where the area would be decomposed into
multiple convex areas, a traveling salesman problem would be
solved to determine the order in which to visit the subareas,
and lawnmower-style paths would be placed in each individual
subarea, with additional consideration as to how to space the
sweep lines such that the path-length constraints are met and
the partial coverage path does not cover any subareas more
than the others. This process would take significantly more
time than the simple lawnmower path generation for a convex
area used as a comparison method in this article.

2) Optimality Results: Based on the optimality comparisons
in Fig. 13, direct optimization results in the best paths with
respect to path cost, followed by the VPG algorithm and the
Soltero method, with the worst being the lawnmower pattern.
The VPG algorithm outperforms both the simple lawnmower
path and the method from [23] in terms of path cost. From
Fig. 13, the cost of the lawnmower path is anywhere between
17% and 50% higher than the cost of the optimal path for
the path lengths tested, and the method in [23] produces paths
with costs between 15% and 25% higher. The VPG algorithm
creates the paths that cost between 5% and 11% more than the
optimal path. The VPG algorithm creates the paths with costs
between 63% and 83% closer to the cost of the optimal path
than the basic lawnmower paths and between 45% and 55%
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closer than the paths generated using the method from [23],
indicating that from an optimality standpoint, it is much better
to use for generating partial coverage paths.

One further note is that while the VPG algorithm does sig-
nificantly better than the lawnmower path generation method
over the range of waypoints tested, the normalized cost of
the lawnmower path decreases overall as the number of
waypoints increases, suggesting that as the path becomes long
enough to approach complete coverage, the lawnmower paths
could become just as good as the paths generated using the
Voronoi-based method. However, for partial coverage, which
is the focus of this article, the VPG algorithm is the better
of the two methods to use, and its ease of application in
nonconvex areas could still make it a reasonable alternative to
a lawnmower path in such areas even as the path approaches a
length where the costs of the paths from both methods become
comparable.

From Table I, the standard deviations for the VPG algorithm
are between 1% and 2.6% of the optimal path cost, indicating
that despite using random initial paths, the final paths gener-
ated by the algorithm are fairly consistent in cost. This is on
par with the direct optimization method, which has standard
deviations for most tests between 1.6% and 2.8%. There is
a bit more variability in the Soltero method, with standard
deviations ranging from 4.1% to 12.7% of the optimal path
cost. The lawnmower path generation method has no standard
deviation because it is deterministic, not iterative, and thus
generates the same path every time when given the same area
and path-length constraint.

3) Comparison Analysis: The VPG algorithm has different
strengths when compared individually to the other methods.
While it runs slower than a simple lawnmower path gener-
ation, the paths from the VPG method have costs that are
significantly closer to the optimum than the lawnmower path.
The VPG method is also significantly simpler to apply to a
nonconvex area than the lawnmower path generation method.
Large amounts of research have been done just to find the best
way of putting a lawnmower-style path onto a nonconvex area
for complete coverage, and extending these methods to partial
coverage is so complex as to be beyond the scope of this
article. Compared to direct optimization, the VPG algorithm
generates paths whose costs are not as close to the optimal path
cost, which is to be expected, but the loss in optimality is made
up for in the drastic improvements in runtime as the number
of path waypoints increases. The method from [23] performs
moderately worse than the VPG on both metrics, primarily
because it is not designed to have hard path-length limits
applied to it. The path length can only be controlled indirectly
by changing the weights in the cost function, with the required
weights varying based on multiple considerations such as path
length, area size, and area shape. The easiest way to find the
correct weights is by changing them iteratively, which is not
particularly efficient. It also causes the phenomenon seen in
the plot of total runtimes where the total runtime actually
decreases with the number of waypoints. More waypoints
allow for a longer path, which means having to iteratively
change the weights fewer times, resulting in fewer iterations
to converge. The method from [23] also requires taking area

integrals numerically, increasing computation time compared
to the VPG algorithm, which is specifically designed to avoid
taking area integrals.

B. Real-World Tests

The results of the real-world tests show two things. First,
the method can be implemented on an actual robotic platform
to successfully generate coverage paths for the robot to follow,
with better coverage than lawnmower-style paths. Second,
given a reasonably accurate energy model and a robot capable
of closely following the generated path, there is a little
difference between simulated and real-world results.

1) Comparison of Path Generation Methods: For both test
areas, the VPG method produced paths better than a lawn-
mower path, as shown in Tables II and III. In the smaller
area, the path generated using the VPG method had a 22.2%
lower cost in the real-world flight tests. In the larger area,
the path generated using the Voronoi method had a 3.0%
lower cost in the real-world flight tests. The difference in
cost improvement between the two areas can be explained by
the difference in area size, wait time at each waypoint, and
distance between waypoints, all of which affect the length
of the generated path compared with the area size and thus
affect the ability of the generated path to cover the area.
In addition, if the waypoint spacing is very small with respect
to the area size, the interaction between the different types
of spring forces can cause the path having difficulty getting
close to the optimal path. For closely spaced waypoints, the
Voronoi areas for points along the straight lines become long
narrow rectangular shapes, with the centroid almost on top of
the waypoint, whereas the Voronoi areas for waypoints along
the curved sections of the path end up being large triangles or
trapezoids with centroids far from the waypoints. If there are
large numbers of closely spaced waypoints, the few waypoints
along the curves must pull a large number of waypoints along
with them if they are going to get close to the centroids of
their Voronoi areas, in which they are not always able to do,
causing the system to converge to a less good path.

2) Comparison With Simulation: For both test areas, the
results of the physical flight tests track closely with the
simulated results. As can be seen from Tables II and III,
the computed costs for the final flight paths were similar to
those for the paths in simulation. In the smaller area, the paths
generated using the VPG method had a 1.2% cost difference
between reality and simulation, and the lawnmower paths had
a 2.0% difference. In the larger area, the paths generated by
the VPG method have a 3.2% difference between reality and
simulation, and the lawnmower paths had a 1.5% difference.
Since the lawnmower path generation method is deterministic,
the percent differences in path costs between the real world
and the simulation tests must come from slight discrepancies
in the waypoint following on the physical robotic platform.
The fact that the VPG method had similar differences between
the real-world and simulated paths suggests that the difference
is also accounted for primarily by slight discrepancies in the
waypoint tracking of the robotic platform.

In the smaller area, the VPG method path had a 24.6% lower
cost than the lawnmower path in simulation compared with a
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22.2% lower cost in the real-world flight tests. In the larger
area, the path generated using the VPG method had a 1.3%
lower cost than the lawnmower path in simulation compared
with a 3.0% lower cost in the real-world flight tests. The
similarity between the cost improvements seen in simulation
and the cost improvements seen in the real-world flight paths,
along with the small percent differences between real-world
and simulation results, indicate the applicability of simulation
results to physical robotic systems for different area sizes and
shapes and different numbers of waypoints, suggesting that
all of the conclusions drawn through the simulation tests will
hold for physical robotic systems.

In summary, there are a few key points from the simulations
and physical experiments. First is that the VPG algorithm
strikes a good balance between optimality and runtime, with
none of the comparison algorithms performing better on both
counts. The linear nature of the measured time complexity
suggests that the algorithm would scale relatively well to
large numbers of path waypoints. The paths created using the
VPG algorithm are near-optimal, with average costs falling
between 5% and 11% of the cost of the true optimal path.
The method can successfully be applied to a physical mobile
robotic platform to generate actual coverage paths, given a
robot capable of closely following paths with sharp turns.
The results from the physical experiments track closely with
those from the simulations using the same areas and path
parameters, with path cost differences of 1%–3%, indicating
that the simulation analysis is applicable to real-world mobile
robotic systems.

VII. CONCLUSION AND FUTURE WORK

This article presented the VPG method for planning
near-optimal coverage paths for a mobile robot given
path-length constraints due to energy limitations. The path
generation algorithm distributes path waypoints using a
potential field created by modeling the path as a chained
mass-spring-damper system. In this system, the waypoints
are represented by masses, spring forces between adjacent
waypoints maintaining waypoint spacing, other spring forces
pulling waypoints toward the centroids of their Voronoi poly-
gons, and a damping force acting between waypoints and
the ground. Little work has been done previously exploring
how to best generate paths that can only provide partial area
coverage due to energy constraints, and the path-planning
method described in this article is a novel approach to solving
that problem.

Simulations were run to compare the VPG method with
other methods that can generate partial coverage paths. The
algorithm presented in this article is much faster than directly
optimizing the waypoint locations, and it provides paths with
costs much closer to the optimal path cost than the common
method of applying a simple lawnmower pattern path to an
area. It performs moderately better in terms of both time
and final path cost than the conceptually somewhat similar
method proposed in [23], due in part to differences in design
focuses between the two methods, which resulted in different
methods of modeling the system and generating the potential

fields that move the path waypoints. The VPG method creates
near-optimal coverage paths, with costs within about 10% of
the cost of the optimal path. The method’s runtime scales
linearly with the number of waypoints, allowing it to feasibly
handle paths with large numbers of waypoints. Finally, the
algorithm can also handle generating paths for both convex and
nonconvex areas with no additional modifications required.

The VPG algorithm was also successfully used to plan paths
for a real-world mobile robotic platform in two different areas
with different sizes and shapes. The VPG algorithm performed
better than a lawnmower path in the physical experiments in
both areas. Simulations were run with the same sizes and
shapes of areas as the real-world tests, with the same number
of path waypoints and waypoint spacing, and the results of
the simulations were compared with the results from the
physical experiments. This indicates that the results from the
simulations and the analysis performed on those results hold
for real-world mobile robotic systems, assuming a reasonably
accurate energy model and a robotic platform capable of
traversing the generated paths.

Some limitations of the algorithm include requiring a fairly
accurate energy model, assuming that the robot can rotate in
place, and the algorithm struggles when the waypoint spacing
is less than about 1% of the largest area dimension.

There are a few possible directions for future research to
build on the work done for this article. One avenue could be
physical testing of this method with a live sensor and analysis
of the maps it generates of the measured quantity. A second
potential direction could involve extending the VPG method
to 3-D spaces, whether for volumetric coverage or coverage
of 3-D surfaces. A possible avenue of future research could
also involve adapting the VPG algorithm to plan multiagent
coverage paths, allowing multiple mobile robotic platforms
to cover the area of interest. Another interesting research
direction could be finding ways to modify the mass-spring-
damper model of the system to generate paths that meet
the nonholonomic motion constraints of robotic systems such
as cars or fixed-wing UAVs, for example, using optimal
control [57].
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