
APPENDIX I
COST REDUCTION DERIVATIONS

We provide more involved derivations of all of the cost function reductions presented in Section III of the paper. In the
following, the density function for the uniform distribution for set A is defined as

UA(x) =

�
uA if x ∈ A

0 otherwise
(10)

where uA = 1
vol(A) , where vol(A) defines the volume of the set. A Dirac-delta distribution δa(x) for state a ∈ X is a

special case of a uniform distribution where the support is limited to a single state A = {a}. In this case δa(x) = 1 if x = a
and 0 otherwise.

A. Goal Set Indicator

We set the terminal state uncertainty distribution when following trajectory τ to be the Dirac-delta distribution (i.e. known
state/deterministic dynamics), δxT |τ (x), where xT ∈ X is the state reached after following trajectory τ . We set the goal
distribution to be a uniform distribution UG(x) over the goal set G. Minimizing the I-projection of the KL divergence between
these distributions we recover

argmin
τ

DKL(δxT |τ (x) � UG(x)) = argmin
τ

�

x∈X
δxT |τ (x) log

δxT |τ (x)

UG(x)
dx (11)

= argmin
τ

�

x∈{xT }
log

1

UG(x)
dx (12)

= argmin
τ

�
− log uG if xT ∈ G
∞ otherwise

(13)

where Equation 12 follows from the fact that δxT |τ (x) = 1 for x ∈ {xT } and δxT |τ (x) = 0 for x ∈ X \ {xT }. Hence
the minimum is obtained with a constant cost if the terminal state xT of trajectory τ reaches any point in the goal set G
while any state outside of G receives infinite cost. This function is non-differentiable as expected from the set-based goal
definition. We can treat a single goal state naturally as a special case of this function. While the KL divergence provides
these specific costs, this cost function is equivalent to any classifier or indicator that provides distinct costs for inside the
goal set versus outside (e.g. {0, 1} or {−1,+1}). Another common equivalent formulation provides a cost of 1 (true) inside
the goal set as and outside the set as 0 (false) and define a maximization.

B. (Weighted) Euclidean Distance:

Consider a Gaussian goal distribution N
�
x | g,Λ−1

g

�
with mean centered at a desired goal state g, and assume a Dirac-

delta distribution over the current state (i.e. known state/deterministic dynamics), δxT |τ (x), where again xT is the resulting
state from following trajectory τ . Minimizing the I-projection recovers a weighted squared Euclidean distance:

argmin
τ

DKL
�
δxT |τ (x) � N

�
x|g,Λ−1

g

��
= argmin

τ

�

x∈X
δxT |τ (x) log

δxT |τ (x)

N
�
x | g,Λ−1

g

�dx (14)

= argmin
τ

�

x∈{xT }
log

1

N
�
x | g,Λ−1

g

�dx (15)

= argmin
τ

− logN
�
x = xT | g,Λ−1

g

�
(16)

= argmin
τ

C +
1

2
(xT − g)TΛg(xT − g) (17)

= argmin
τ

�xT − g�2Λg
(18)

where Λg defines the precision matrix of the goal distribution. By setting the precision matrix to be the identity matrix, we
recover the standard squared Euclidean distance between the terminal state xT and goal state g. We also note that for any
dimension d set to 0 to ignore this dimension results in an associated variance σ2

d = ∞.



C. Maximum Probability of Reaching Goal Point

Minimizing the M-projection with a Dirac-delta distribution δg(x) at a goal state g ∈ X and having arbitrary belief
distribution p(x | τ) over the state when following trajectory τ , the KL divergence reduces to

DKL (δg(x) � p(x | τ)) = argmin
τ

�

x∈X
δg(x) log

δg(x)

p(x | τ)dx (19)

= argmin
τ

�

x∈{g}
log

1

p(x | τ)dx (20)

= argmin
τ

− log p(x = g | τ) (21)

= argmax
τ

p(x = g | τ) (22)

which is maximizing the probability of reaching the point-based goal g following trajectory τ .
In the special case where the probability distribution over state is a Gaussian, we recover the same weighted Euclidean

distance cost as above albeit weighted by the belief state precision instead of the goal distribution precision.

D. Chance-Constrained Goal Set

Consider a uniform distribution UG(x) over goal set G and an arbitrary distribution p(x | τ) over the terminal state after
following trajectory τ . Minimizing the M-projection of the KL divergence between these distributions we get

argmin
τ

DKL(UG(x) � p(x | τ)) = argmin
τ

�

x∈X
UG(x) log

UG(x)
p(x | τ)dx (23)

= argmin
τ

�

x∈G
uG log

uG
p(x | τ)dx (24)

= argmin
τ

�

x∈G
uG [log uG − log p(x | τ)] dx (25)

= argmin
τ

−
�

x∈G
uG log p(x | τ)dx+

�

x∈G
uG log udx (26)

= argmin
τ

−uG

�

x∈G
log p(x | τ)dx+ C (27)

= argmax
τ

�

x∈G
log p(x | τ)dx (28)

= argmax
τ

�

x∈G
p(x | τ)dx (29)

Equation 29 defines the probability of reaching any state in the goal set G, a commonly used term for reaching a goal set
in chance-constrained control (e.g. Equation (6) in [9]).

APPENDIX II
EXPERIMENT ENVIRONMENTS

A. Dubins Car 2D Navigation

We use the Dubins car model from [4] which is a simple vehicle model with non-holonomic constraints in the state space
X = SE(2). The state x = (px, py,φ) denotes the car’s planar position (px, py) and orientation φ. The dynamics obey

ṗx = v cosφ, ṗy = v sinφ, φ̇ = u (30)
where v ∈ [0, vmax] is a linear speed and u ∈ [− tanψmax, tanψmax] is the turn rate for ψmax ∈

�
0, π

2

�
.

We use an arc primitive parameterization similar to [4] to generate trajectory samples for CEM. Actions v, u are applied
at each timestep for duration τ such that the robot moves in a straight line with velocity v if u = 0 and arcs with radius v/u
otherwise. A trajectory with m arc primitives has the form (v1, u1, τ1, . . . , vm, um, τm) ∈ R3m, which are sampled during
CEM optimization.

The state space under this parameterization evolves as

px(t) = px(ti) +
v

ui+1
(sin(φi +Δtiui+1)− sin(φi) (31)

py(t) = py(ti) +
v

ui+1
(cosφi − cos(φi +Δtiui+1)) (32)

φ(t) = φi +Δtiui+1 (33)

where Δti = t− ti and φi = φ(ti) for the ith primitive. Note we add a small value u� = 1e− 5 to each ui to avoid division
by zero, which simplifies the computation described in [4]. We extend the model in [4] to have stochastic dynamics by
adding Gaussian noise w ∼ N (x | 0,αI) to the state updates in Equations 31-33; we use a value of α = 0.02.



B. 7-DOF Arm Environment

We use the Franka Emika Panda arm rendered in rviz. The state is the arm’s 7-D joint configuration in radians, where
we compute state updates simply as

qt+1 = qt +w; w ∼ N (x | 0,αI) (34)

We use PyBullet for checking collisions between the robot and the environment.
We use the same KL divergence cost and collision cost as the Dubins car environment. We add one additional cost term

for the arm that specifies the arm’s end-effector should reach a desired position in its workspace
t+H�

i=t

λi�xd − FK(q)�22 (35)

where xd is the desired end-effector position to be reached, FK(·) is the robot’s forward kinematics function, and λi =
i−t
H .

We compute the forward kinematics using PyBullet.


