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Abstract This paper proposes a novel approach to

performing in-grasp manipulation: the problem of mov-

ing an object with reference to the palm from an initial

pose to a goal pose without breaking or making con-

tacts. Our method to perform in-grasp manipulation

uses kinematic trajectory optimization which requires

no knowledge of dynamic properties of the object. We

implement our approach on an Allegro robot hand and

perform thorough experiments on 10 objects from the

YCB dataset. However, the proposed method is general

enough to generate motions for most objects the robot

can grasp. Experimental result support the feasibillty

of its application across a variety of object shapes. We

explore the adaptability of our approach to additional

task requirements by including collision avoidance and

joint space smoothness costs. The grasped object avoids
collisions with the environment by the use of a signed
distance cost function. We reduce the effects of unmod-
eled object dynamics by requiring smooth joint trajec-

tories. We additionally compensate for errors encoun-

tered during trajectory execution by formulating an ob-

ject pose feedback controller.
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1 Introduction and Motivation

The problem of robotic in-hand manipulation–changing

the relative pose between a robot hand and object,
without placing the object down–remains largely un-
solved. Research in in-hand manipulation has focused

largely on using full knowledge of the mechanical prop-

erties of the objects of interest in finding solutions (Li

et al, 1989; Mordatch et al, 2012; Han and Trinkle, 1998;

Andrews and Kry, 2013). This reliance on object spe-

cific modeling makes in-hand manipulation expensive
and sometimes infeasible in real-world scenarios, where
robots may lack high-fidelity object models. Learning-

based approaches to the problem have also been pro-

posed (Kumar et al, 2016; Hoof et al, 2015); however,

these methods require significant experience with the

object of interest to work and learn only a single mo-

tion primitive (e.g. movement to a specific goal pose).
Solving the general in-hand manipulation problem us-
ing real world robotic hands will require a variety of

manipulation skills (Bicchi, 2000). As such, we focus on

a subproblem of in-hand manipulation: in-grasp manip-

ulation where the robot moves an object under grasp

to a desired pose without changing the initial grasp.

We explore a purely kinematic planning approach for

in-grasp manipulation motivated by recent successes in

kinematic grasp planning (Ciocarlie et al, 2007; Carpin

et al, 2016).

Giving robots the ability to perform in-grasp ma-

nipulation would allow for changing a grasped object’s
pose without requiring full arm movement or complex

finger gaiting (Hong et al, 1990). Many tasks requir-

ing a change in relative pose between the hand and

the grasped object do not require a large workspace

and can be performed without changing the grasp. Ex-

ample tasks include turning a dial, reorienting objects
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Fig. 1: Example trajectory produced by our method

executed on the Allegro hand. The trajectory moves the

Lego from its initially grasped pose to a desired pose.

The robot follows the joint space trajectory produced

from our trajectory optimizer with a PD based joint

position controller. The images on the right show frames

from execution where t refers to the timestep.

for insertion, or assembling small parts such as watch

gears. This is especially beneficial in cluttered environ-
ments where small movements would be preferred to
avoid collisions. In this paper, we propose a kinematic

planner for in-grasp manipulation through trajectory

optimization. The proposed planner gives a joint space

trajectory that would move the object to the desired

pose without losing grasp of the object. By attempting

to maintain the contact points from the initial grasp
during manipulation, we do not require any detailed
models of the grasped object.

The in-grasp manipulation problem is under-actuated,

as the object’s states are not fully or directly control-
lable. As such, it does not immediately offer a kinematic
solution. A naive approach would be to model all con-

tacts between the object and robot as rigid links and
plan for a desired object pose as if the robot were a
parallel mechanism. However, in most robotic hands,
the fingers have fewer degrees of freedom (DOF) than

necessary to control a 6 DOF world pose. Thus, we

introduce a novel cost function which relaxes the rigid-

ity constraints between the object and fingers. This

cost function penalizes the robot fingertips for chang-

ing the relative positions and orientations between each

other from those used in the initial grasp. We name

this cost function the relaxed-rigidity constraint. We

combine relaxed-rigidity constraints for all fingers with

cost terms that encourage the object’s movement to the

desired pose. This combined cost function defines the
objective for our purely kinematic trajectory optimiza-
tion. The result allows for small position and orienta-

tion changes at the contact locations, while maintain-

ing a stable grasp as the object moves toward the de-

sired pose. Fig. 1 shows an example trajectory from our

planner. This kinematic planner successfully performed

in-grasp manipulation with 10 objects across 500 trials
without dropping the object.

Our approach to in-grasp manipulation directly solves

for a joint space trajectory to reach a task space goal,

in contrast to previous methods (Mordatch et al, 2012;

Li et al, 2013) which rely on separate inverse kinematic

(IK) solvers to obtain joint space trajectories. Our di-

rect solution is attractive, as IK solutions become com-

plex when a robot is under-actuated in terms of the

dimensions of the task space (i.e. the end-effector of

a 4 joint manipulator cannot reach all orientations in

a 6 dimensional task space for a given position). Our
approach additionally handles hard constraints on the
robot’s joint positions and velocities. The problem is ef-

ficiently solved as a direct optimization using a sequen-

tial quadratic programming (SQP) solver. Our method

allows for changing the object’s pose without the need

to know the dynamic properties of the object or the

contact forces on the fingers. Solving directly in the
joint space also allows us to have costs in the input
space such as smooth joint acceleration between time-

steps to allow smooth operation of the robot during

manipulation. The use of Trajectory optimization also

allows for using advancements in collision-free manip-

ulator motion planning (Schulman et al, 2014) to our

in-grasp manipulation problem and we show how our

planner can avoid collisions with the environment dur-

ing manipulation. In addition, we compensate for error

in trajectory execution online by incorporating an ob-

ject pose feedback control scheme.

Our “Relaxed-Rigidity” planner makes the follow-
ing contributions validated with real-world experiments:

1. We demonstrate that a purely kinematic trajectory

optimization sufficiently solves a large set of in-grasp

manipulation tasks with a real robot hand.

2. We enable this kinematic solution by introducing a

novel relaxation of rigid-contact constraints to a soft

constraint on rigidity expressed as a cost function.

We name this the relaxed-rigidity constraint.
3. Our method directly solves for joint configurations

at all time steps, without the need of a separate

inverse kinematics solver, a novel contribution over

previous trajectory optimization approaches for in-

hand manipulation (e.g. Mordatch et al (2012)).
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4. We are the first to extensively validate an in-grasp

manipulation planner on a real robot hand. We do so
with multiple objects from the YCB dataset (Calli
et al, 2015) and introduce relevant error metrics,

paving the way for a unified testing scheme in future

works (c.f. Section 5).

This articles makes the following contributions over

our previous work (Sundaralingam and Hermans, 2017):

1. We introduce a joint acceleration cost to prefer smooth

joint space paths, leading to lower object dynamics
excitation.

2. We enable collision-free manipulation planning of

the object in cluttered environments by including a

signed distance cost function.

3. We compensate for error online during trajectory
execution through an object-pose feedback controller.

We organize the remainder of the paper as follows.

We discuss in-hand manipulation research related to

our approach in Section 2. We follow this with a formal

definition of the in-grasp manipulation problem and

a detailed explanation of our in-grasp planner in Sec-

tion 3. We present our extensions over the initial plan-

ner in Section 4. We then discuss implementation de-

tails and define our experimental protocol in Section 5.

We analyze the results of extensive robot experiments

in Section 6. We discuss the limitations of our approach

in Section 7 and conclude in Section 8.

2 Related Work

In-hand manipulation has been studied extensively (Li

et al, 1989; Bicchi and Sorrentino, 1995; Fearing, 1986;

Härtl, 1995). The topic is often referred to as dexterous

manipulation (e.g. Han and Trinkle (1998)) or fine ma-

nipulation (e.g. Hong et al (1990)). We choose the term

in-hand manipulation to highlight the fact that the op-

erations happen with respect to the hand and not the

world or other parts of the robot. We believe that dex-

terity can be leveraged for a number of tasks, which do

not fundamentally deal with in-hand manipulation, and

that a robot can finely manipulate objects without the

need for multi-fingered hands or grasping. This section

covers those methods that are most relevant to our ap-

proach and does not discuss in detail methods for finger

gaiting (e.g. Hong et al (1990); Rus (1992)) or dynamic

in-hand manipulation (Srinivasa et al, 2005; Bai and

Liu, 2014).

Salisbury and Craig (1982) explore grasping of ob-

jects with different hand designs. Salisbury and Roth

(1983) explore gripping forces on grasped objects with

three finger, three joint hand designs. Their work on

force control with tendon driven articulated hands showed

the need for dexterity near the end-effector for manip-
ulation of grasped objects.

Li et al (1989) developed a computed torque con-
troller for coordinated movement of multiple fingers on
a robot hand. The controller takes as input a desired

object motion and contact forces and outputs the set

of finger torques necessary to create this change. The

controller requires models of the object dynamics (mass

and inertia matrix) in order to compute the necessary

control commands. The authors demonstrate in simula-

tion the ability for the controller to have a planar object

follow a desired trajectory, when grasped between two

fingers. Härtl (1995) factors forces on objects and force

to joint torque conversions to perform in-hand manipu-

lation accounting for slippage and rolling. An analytical

treatment of dynamic object manipulation is explored
with ways for reducing the computations required.

Han et al. (Han et al, 1997; Han and Trinkle, 1998)
attempt in-hand manipulation with rolling contacts and
finger gaiting requiring knowledge of the object surface.

They solve for Cartesian space finger-tip and object

poses. Results for rolling contacts are demonstrated us-

ing flat fingertips to manipulate a spherical ball. The

robot tracks the end-effector velocities using the ma-

nipulator Jacobian to determine the joint velocities.

Bicchi and Sorrentino (1995) analyze the kinemat-

ics of rolling an object grasped between fingers. The au-

thors present a planner for rolling a sphere between two

large plates acting as fingers. This is achieved through

creating a state feedback law of vector flow fields. All

these early methods require extensive details about the

object which is hard to obtain in the real world and

is inefficient when attempting to manipulate novel ob-

jects.

In-hand manipulation research has diverged in terms

of approaches. Mordatch et al (2012) formalize in-hand

manipulation as an optimization problem. They solve

for a task space trajectory and obtain joint space tra-

jectories for the robot using an IK solver independent

of their optimization. The trajectory optimization ap-

proach factors in force closure, but uses a joint level po-
sition controller to perform the manipulation assuming
they have a perfect robot dynamics model to convert

end-effector forces to positions. Experimental evalua-

tion is shown only in simulation.

Similar to our approach, Hertkorn et al (2013) seek

to find a trajectory to a desired object pose without

changing the grasp. Their approach additionally solves

for an initial grasp configuration to perform the desired

motion in space. They discretize the problem by cre-

ating configuration space graphs for different costs and

use a union of these graphs to choose a stable grasp.
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They perform an exhaustive search through this union

of graphs to find the desired trajectory. Their approach

does not scale, even to simple 3D problems, with multi-

fingered robot hands as stated by the authors and they

show no real-world results. Their method is computa-

tionally inefficient as the reported time for finding a

single feasible trajectory was 60 minutes for a two fin-

gered robot with 2 joints each. In contrast, we efficiently
and directly solve for joint positions in the continuous
domain using trajectory optimization.

Andrews and Kry (2013) take a hierarchical ap-

proach to in-hand manipulation by splitting the prob-
lem into three phases: approach, actuation, and release.

Their method uses an evolutionary algorithm to opti-
mize the individual motions. This requires many for-
ward simulations of the full dynamical system and does
not leverage gradient information in the optimization.

Another drawback, as stated by the authors, is that

their approach cannot be applied to objects with com-

plex geometry.

Hang et al (2016) explore grasp adaptation to main-

tain a stable grasp and compensate for slippage or ex-

ternal disturbances with tactile feedback. They use the

object’s surface geometry to choose contact points for

grasping and when performing finger gaiting to main-

tain a stable grasp. Their method could be used to ob-

tain an initial stable grasp which could then be used in

our approach to move the object to a desired pose.

Li et al (2013) use two KUKA arms to emulate in-

hand manipulation with tactile and visual feedback to

move objects to a desired pose. The use of flat contact

surfaces limits the possible trajectories of the object.

The use of a 7 joint manipulator as a finger also allows

for reaching a larger workspace than common robotic

hands which are mostly limited to 4 joint fingers. The

evaluation is limited to position experiments and single

axis orientation changes.

Scarcia et al (2015) perform in-grasp manipulation

as a coordinated manipulation problem by adding arm

motion planning. They assume a point contact with

friction model between the object and the fingertips.

They enumerate to obtain the reachability for an object

pose. They do not perform extensive experiments with

objects.

Rojas and Dollar (2016) present a method to ana-

lyze the kinematic-motion of a hand with respect to a

grasped object. This tool could be used to find feasible

goal poses for an object without changing the current

grasp similar to Hertkorn et al (2013). However the au-

thors are motivated by designing dexterous robot hands

and do not perform any planning with their technique.

Kumar et al (2014) examine the use of model-predictive

control for a number of tasks including in-hand manip-

ulation. They rely on hand synergies and full models

of the robot and object dynamics to compute their op-

timal controllers. However, they recently built on this

approach (Kumar et al, 2016) and used machine learn-

ing to construct dynamics models for the object-hand

system. These models could then be used to create a

feedback controller to track a specific learned trajec-

tory. They show results on a real robot hand with a high

number of states and actuators. However, their method
requires retraining to be used if manipulating a new ob-
ject or moving to a new goal pose. Hoof et al (2015) use

reinforcement learning to learn a policy for rolling an

object in an under-actuated hand. The resulting policy

leverages tactile feedback to adapt to different objects,

however they must learn a new policy if they were to

change the desired goal. Finally, while these learning-

based methods show promise in rapidly converging to

a desired controller, they still require multiple runs on

the robot.

In contrast, we perform in-grasp manipulation on
a physical robot hand with novel objects, without re-

quiring extensive object information or performing any
iterative learning.

3 In-Grasp Manipulation Planning through

Relaxed-Rigidity Constraints

We define the problem of in-grasp manipulation plan-

ning as finding a trajectory of joint angles Θ ∈ [Θ1, ΘT ]

that moves the object from its initial pose X0 at time 0

to a desired object pose Xg at time T without changing

the fingertip contact points on the object. We address

this problem under the following simple assumptions:

1. The object’s pose can only be affected by the robot
and gravity, i.e. there are no external systems acting

on the object.

2. The object is rigid.

3. The initial grasp is a stable grasp of the object.

4. The desired object pose is in the reachable workspace

of the fingertips.

We formulate our solution as a nonlinear, non-convex

constrained kinematic trajectory optimization problem:

min
Θ

Eobj(ΘT , Xg) + k1

T−1
∑

t=0

Eobj(Θt,Wt)

+ k2

T
∑

t=0

Epos(Θt) + k3

T
∑

t=0

Eor(Θt) (1)

s.t.

Θmin � Θt � Θmax, ∀t ∈ [0, T ] (2)

− Θ̇max � Θt−1 −Θt

∆t
� Θ̇max, ∀t ∈ [1, T ] (3)
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(a) t = 0 (b) t = T

Fig. 2: Depiction of a trajectory optimization solution at the initial and final time steps. The thumb-tip frame is

shown as frame i, finger f ’s tip frame is f , and w defines the world frame. The initial pose of the object with the
grasp is shown in (a), the object has to reach the goal pose (b). Our approach models the thumb frame as rigidly

attached to the object during the trajectory, while finger f has a relaxed-rigidity constraint. The effect can be seen

in (b), where the relative orientation and position between frames i and f have changed from the initial grasp at

t = 0. The i
0P f ,

i
TP f , c0 and cT terms from Sec. 3.2 are shown as green, blue, orange and red vectors respectively.

θi1-i3, θf1-f3 are the joint angles of thumb and finger f .

The first constraint enforces the joint limits of the robot

hand, while the second inequality constraint limits the

velocity of the joints to prevent rapid movements. The

scalar weights, k1, k2, k3, on each cost term allow us to
tune the trade-off between the four cost components.

Wt defines the waypoint of the object pose at time t

computed automatically as described below.

In order to achieve a purely kinematic formulation,

we plan with a number of approximations, which we

validate with experiments in Sec.6. We now describe

the components of the cost function in detail.

3.1 Object Pose Cost

The first term in the cost function (Eq.1), Eobj(ΘT , Xg),
is designed to minimize the euclidean distance between

the planned object pose at the final time step XT to

the desired final object pose Xg. Our kinematic trajec-

tory optimization approach assumes no knowledge of

the dynamic properties of the object, as such we can

not directly simulate the object pose Xt during our op-

timization. Instead, we leverage the fact that in-grasp
manipulation assumes no breaking or making of con-

tacts during execution, meaning, in the ideal case, con-
tact points between the robot and object remain fixed.

In our approach we thus plan as if the contact point

between the thumb-tip1 and the object is rigid. This

allows us to define a reference frame for the object X

1 The choice of thumb is arbitrary and made only to clarify
the discussion. Any fingertip could be chosen to define the
reference frame for the object.

with respect to the thumb-tip i such that the transfor-

mation between the thumb-tip and the object remains

fixed during execution. As the thumb-tip moves with re-

spect to the world frame w, we compute the transform
to the object frame as

wTX = wT i · iTX (4)

where the superscript refers to the reference frame and

the subscript to the target frame. The object’s trans-

formation matrix is represented by iTX with reference
to thumb-tip i.

We can now transform the desired object pose Xg

into a desired thumb pose Gi in the world frame w. The
cost function Eobj can now be formally defined as

Eobj(ΘT , Xg) = ||Xg · XT i − FK(ΘT , i)||22 (5)

where, Xg · XT i and FK(ΘT , i) gives the pose of the

thumb-tip i with reference to the world frame. Thus by

using the forward kinematics (FK) internally within the

cost function we can directly solve for the joint angles

of the thumb at the desired object pose.

The second term
T−1
∑

t=0
Eobj(Θt,Wt) present in the

cost function (Eq.1) encourages shorter paths to the

desired pose. We define the waypoints Wt for every

time-step t be linearly interpolated from the initial ob-

ject pose to the desired object pose Xg, equally spaced

across all timesteps. We weigh this term at a very low

scale relative to the other cost terms, to encourage a

shorter path as a linear path is not always guaranteed.
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3.2 Relaxed-Rigidity Constraints

Since most robotic fingers are under-actuated with re-
spect to possible 6 DOF fingertip poses, we can’t apply

the same rigid-contact constraint with respect to the

object pose, as we did for the thumb for all the remain-

ing fingers. Doing so would reduce the reachable space

for the remaining fingers, resulting in a smaller manipu-

lable workspace for the object (manipulable workspace
being the workspace covering all possible object poses
for a given grasp). Instead, we relax the rigid-contact

constraint for all other fingers in the grasp, allowing

for a larger manipulable workspace. The remaining two

terms in the cost function (Eq.1), Epos and Eor, define

our novel relaxed-rigidity constraint. The combined ef-

fect of the terms encourages the fingertips to remain at

the same contact points on the object throughout the

trajectory.

We define the cost term Epos(Θt) to maintain the

initial relative positions between the thumb, i, and the
remaining fingertips, f throughout execution:

Epos(Θt) =

n
∑

f=1

|| i0P f − iTw · FKP (Θt, f)||22 (6)

where iTw ·FKP (Θt, f) defines the fingertip position for

finger f in the thumb frame i at time t and FKP (Θt, f)

computes the position of fingertip f for joint configu-

ration Θt. Combined with the object pose cost, which

moves the thumb towards the goal pose, this cost min-
imizes deviation from the initial grasp, while moving

towards the goal pose.
The last cost term Eor(Θt) encourages the other fin-

gers to maintain their relative orientation to the thumb

to be the same as that in the initial grasp. Maintaining

this cost across all three orientation dimensions, would

again over-constrain the problem to the full rigidity

constraint. We relax this constraint by introducing a

weight vector ψ which defines a relative preference for

deviation in different orientation dimensions

Eor(Θt) =

n
∑

f=1

||(FKi
RPY (Θ, f)− c

f
0 ) · ψ||22 (7)

where FKi
RPY (Θ, f) computes the roll, pitch, yaw of

the unit vector between the thumb, i and finger f at

time t. Fig. 2 illustrates the vectors used in the relaxed-

rigidity constraints.

4 Extensions

In this section we introduce two extensions to our relaxed-

rigidity trajectory planner–joint acceleration smooth-
ness and collision avoidance. We additionally propose

an object pose feedback controller to compensate for er-

rors encountered during execution of the in-grasp plan.

4.1 Joint Acceleration

We find that the linear interpolation cost term

T−1
∑

t=0

Eobj(Θt,Wt)

in Eq.1 aids our trajectory optimization in finding a

path to the desired object pose; however, it imposes

two limitations:

1. The planner prefers a linear object paths to the de-

sired pose which may not always be possible.
2. The object velocity prefers to be constant during

the manipulation which might cause sudden jerk of

the object and thereby the joint control.

We explore an alternative cost which prefers smooth

paths in the joint space. We minimize the acceleration

between time steps following the sum of squares formu-

lation from Toussaint (2017). This allows for smoother

paths, while also not encouraging the object to follow

a linear path to the desired pose. We replace the lin-

ear waypoint interpolation cost term with the following

cost term,

α1

T+1
∑

t=0

(||Θt−2 − 2Θt−1 +Θt||22 (8)

where we force ΘT+1 = ΘT , and Θ−1 = Θ−2 = Θ0. We

discuss the empirical effects of this in Section 6.2.

4.2 Collision Avoidance

As proposed in Section 3 our planner does not avoid
collisions between the object and the robot palm or the
object and the environment. We now propose adding

an obstacle-based cost function to the optimization in

order to obtain collision-free plans while moving the ob-

ject to the desired pose. We use signed distance func-

tions to measure the distance between the grasped ob-

ject and the environment motivated by other trajectory
optimization approaches for motion planning (Zucker
et al, 2013; Schulman et al, 2014).

The signed distance computes the shortest distance

between a point p and the mesh M . The sign denotes

if p lies within the mesh (negative) or outside the mesh

(positive). Given the object mesh,M , in the palm frame,

the hand joint configuration, Θ, and the environment
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as a set of objects, W , the truncated signed distance

function can be written as:

C(Θ,M,W ) = α2

∑

w∈W

(β −min(β, SD(M,w))) (9)

which penalizes the object when it comes within β dis-

tance of any obstacles in the environment. Ideally colli-

sion functions should be used as constrains as in Schul-

man et al (2014). However, we found that having the

collision constraint as a cost term with a large scalar

weight α2 provided better trajectories and quicker so-

lutions. Hence we add this as a cost term. This collision

cost can be used to avoid both collisions with the en-

vironment and also with the hand. We add this as an

additional cost term to Eq. 1 and perform trajectory

optimization as before.

4.3 Object Pose Feedback Controller

While our purely kinematic trajectory optimization per-

forms well in practice, it still suffers some error dur-

ing execution caused by friction, contact dynamics, and

other unmodeled effects. Explicitly modeling these vari-

ables proves difficult and complex on real-world ob-

jects and impossibly to know prior to interaction with

a novel object. As such we propose compensating for

these errors through feedback controller based on visu-

ally tracking the object’s pose. We use as targets the de-

sired object pose trajectory XD from initial pose X0 to

the desired object pose XG generated by our “relaxed-

rigidity” planner.

We define our object pose feedback controller to

only affect the thumb joints, as we assume only the

thumb attaches rigidly to the object during planning.

To ensure the object remains in the robot’s grasp, we

track the planned joint trajectory ΘD for the remaining

fingers. As long as the object does not deviate from the

planned trajectory by a large margin, thumb-only feed-

back should prove sufficient to maintain grasp of the

object. (We validate this claim in Sec. 6.3.) The robot

receives as input the joint position configuration U [t]

at every time step t. We define this as a combination of

the feedforward planned joint trajectory ΘD[t+ 1] and

the object pose feedback term Θ̇fb,

U [t] = ΘD[t+ 1] + λfbΘ̇fb[t] (10)

where the positive weight λfb allows for tuning the feed-

back compensation.

The feedback input Θ̇fb[t] corrects for errors be-

tween the planned fingertip pose and the predicted con-

tact pose of the fingertip on the object. The planned fin-

gertip pose at time step t+1 is given by FK(ΘD[t+1]).

Fig. 3: Objects from the YCB dataset with labels below

each of them used in our experiments.

Fig. 4: Example grasps tested with various objects in

our method.

The predicted contact pose at time step t + 1 is com-

puted from the desired object pose XD[t + 1] and the

observed transformation matrix from fingertip to object

frame,
O
T̂ f , as

H(XD[t+ 1],
O
T̂ f ) = Q(R(XD[t+ 1]) · OT̂ f ) (11)

where R(·) converts a pose into a homogenous trans-

formation matrix and Q(·) transforms a homogenous
matrix back into a pose. This essentially accounts for

changes in rigid transformation between the object and
the fingertip.

We define our feedback law by transforming the

Cartesian space object pose error into the joint space
using the inverse of the finger’s Jacobian:

Θ̇fb[t] = −J−1

Θ̂[t]
(FK(ΘD[t+ 1])−H(XD[t+ 1],

O
T̂ f ))

(12)

We found that approximating the Jacobian inverse by

its transpose, rather than the Moore-Penrose pseudoin-

verse performed better for our underactuated fingers.
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5 Implementation Details & Experimental

Protocol

We now describe important details relating to our im-

plementation and the setup of our experiments.

5.1 Trajectory Generation and Feedback

Implementation

Direct methods for trajectory optimization, such as se-

quential quadratic programming (SQP), have shown

promising results in robotics (Schulman et al, 2014;

Posa et al, 2014, 2016). We solve our trajectory op-

timization problem using SNOPT (Gill et al, 2005) an
SQP solver designed for sparsely constrained problems.
We run the solver with a maximum limit of 5000 it-

erations using analytical gradients for the costs and

constraints. The computer used to run the solver and

experiments is an Intel i7-7700K CPU with 32 GB of

RAM running Ubuntu 16.04 with ROS Kinetic (Quigley

et al, 2009). The robot used is the Allegro Hand, which

has four fingers with 4 joints each2. We solve for T = 10

time steps with each time step being ∆t = 0.167s long.

We expand the obtained solution to a higher resolution

of 100 time steps by linearly interpolating the joint tra-

jectories. We limit the joint velocities to be less than

0.6rad/s. Our approach has four weights- three on scal-

ing the importance of each cost term-k1, k2, k3 and a

projection weight ψ for the orientation cost term Eor.

The orientation cost Eor reduces orientation changes

along the weight vector ψ. Ideally, we would want to re-
duce the impact of any contact model on the manipula-

tion task by having weights across all three dimensions.
However, this would reduce the reachable workspace of
the manipulation task as the Allegro hand is under-

actuated with respect to the 6 DOF poses. Hence, we

chose to reduce orientation changes along a single axis,

which covers the largest workspace of fingertip posi-

tions. This is the y-axis with respect to the palm for

the index, middle and ring fingers, making ψ =
[

0 1 0
]

.
We consider this weight as a trade off between allowing

a larger manipulation workspace and enforcing smaller

changes at contact points. We see in Sec. 6.1 that re-

stricting orientation changes along one axis improves

the position error over assuming a point contact model.

The remaining three weights model the relative im-

portance between the cost terms of our optimization.

We want the robot to always maintain contacts close

to the initial grasp during manipulation, this is taken

care of by large value for k2. Keeping the initial orien-
tation is less important, allowing k3 to be less than k2.

2 http://www.simlab.co.kr/Allegro-Hand.htm

The weight for waypoints k1 should help guide the fin-

gers to the goal pose, while being low enough to allow
for non-linear trajectories when linear trajectories are
not feasible. We examined various weights under this

scaling and found k1 = 0.09, k2 = 100, k3 = 1 to work

well across a variety of trajectories and objects. For
k2 < 1.0, the hand dropped the object when unreach-

able object poses were given. The chosen weights, how-
ever, were able to maintain the object in-grasp while
still moving the object towards the desired pose. The

weights chosen for the extensions are α1 = 0.01, α2 =

1000, β = 0.005, λfb = 50.

For the collision avoidance experiments, the grasped
object and the environment are approximately decom-

posed into convex groups using (Mamou and Ghor-

bel, 2009) to speedup signed distance computation. We

compute signed distances using libccd3 based on a com-

bination of the Gilbert-Johnson-Keerthi (GJK) algo-

rithm and the expanding polytope algorithm (EPA), ex-
tensive details are found in (Van Den Bergen, 2001). For
object pose feedback controller, we use a GPU based

particle tracker from Garcia Cifuentes et al (2017) to

track the object using a NVIDIA GTX 1060 GPU.

5.2 Experimental Protocol

We selected objects of different size, texture and shape
from the YCB dataset Calli et al (2015), shown in

Fig. 3, as a benchmarking set. The ten objects used
are: screwdriver, Lego, fork, banana, spatula, toy plane,

Jello, tuna, apple, and orange. A variety of three-fingered

grasps were performed across the objects to show the
reachability of the proposed method; examples can be
seen in Fig. 4.

The set of experiments consist of moving the ob-

ject under grasp to a goal pose. Finding feasible desired
poses given an initial grasp is a complex problem (Ro-
jas and Dollar, 2016; Hertkorn et al, 2013) and we do
not formalize a method to obtain them. Instead, we fo-

cus on obtaining trajectories to a reachable pose and

not on finding reachable poses. We obtain goal poses

by having a human move the object in-grasp to the

desired pose with the robot in gravity compensation
mode. Any other method could be used to obtain de-
sired poses. The Euclidean distance to the desired posi-
tions from the initial object positions, range from 0.8cm

to 8.33cm with a mean of 4.87cm. Desired poses with

small positional change have a large orientation change.

One trajectory for each goal pose was generated.

The ground truth of the object pose is obtained us-

ing Aruco markers Garrido-Jurado et al (2014). The

3 https://github.com/danfis/libccd
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t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 5: Images showing manipulation of objects during trajectory execution. The trajectories are generated from

our method(“Relaxed-Rigidity”). The frame ’O’ represents the current object pose and ’G’ frame is the desired

object pose. Tuna being heavier than all other objects has a larger error due to the PD controller of the hand being
insufficient to counteract the gravitational forces. Banana, having a complex surface also shows a larger error than

objects with a flat surface. Markers used for ground truth collection only. Additional execution of different objects
are shown at https://youtu.be/Gn-yMRjbmPE.

initial pose of the object is obtained by placing the ob-
ject in the hand and forming a grasp manually. Once the
grasp is set, the joint angles are recorded and the ob-

ject pose with respect to the palm link is obtained using

the Aruco markers. We align the object with the initial

pose used for trajectory generation using the markers

and robot forward kinematics. Execution of all trials are

recorded (video, robot frames, and object poses). All as-

sociated data is available (https://robot-learning.

cs.utah.edu/project/in_hand_manipulation) to fa-

cilitate direct comparison.

Relatively little empirical evaluation has been per-

formed for in-hand manipulation on real robot hands.

The lack of a common benchmarking scheme prohibits

us from comparing directly with methods described in

Sec. 2. The Allegro hand we use for physical validation

has hemispherical fingertips which could cause rolling

motion on the grasped object. Modeling rolling mo-

tion (Cutkosky and Wright (1986)) between the fin-

gertips and the grasped object requires extensive in-

formation about the object (surface geometry, friction)

and precise force control of the fingertips. The Alle-

gro hand’s lack of joint level torque sensing prevents

us from comparing our method to methods that use

force control. We compare to the “point contact with

friction” model which can be approximated to a kine-

matic solution for object manipulation (Li et al, 1989).

We formulate this as a trajectory optimization problem

similar to our method with different cost terms. Specif-

ically, we attempt to keep the fingertip positions fixed

with respect to the object, while allowing the relative
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orientation to change. The cost function can be found

in Sundaralingam and Hermans (2017).

We define the following error metrics for evaluating
in-grasp manipulation. The position error is computed

as the Euclidean distance between the reached posi-

tion and the desired position of the object. Addition-

ally, we report position error normalized with respect

to the length of the trajectory as “Position Error%”.

The second metric measures the final orientation er-

ror, calculated using quaternions, as the difference be-

tween rotation frames is not well defined using Euler

angles Huynh (2009).

errorient = 100× min(||qd − q||2, ||qd + q||2)√
2

(13)

where qd is the unit quaternion of the desired object
pose and q is the unit quaternion of the object pose

reached. This error is in the range [0,
√
2] and hence nor-

malized with
√
2 and stated as “Orientation error%”.

Finally, where appropriate, we report as failed attempts

trials where the robot dropped the object during exe-

cution.

Ten unique reachable goal poses and two initial grasps

per object are chosen to validate our planner. To ac-

count for variation in execution and evaluate robust-

ness, 5 trials are run for each trajectory giving a total
of 50 trials per object. The difference in initial position
between trials has a mean error of 0.59cm with an as-

sociated variance of 0.09cm. A total of 2000 trials are

run across different methods to evaluate our proposed

method.

To evaluate the joint acceleration extension to our

planner and the object pose feedback controller, we con-

duct experiments with three objects- Apple, Banana

and Jello. We choose 5 goals poses per object across

two initial grasps per object. We run three trials per

generated trajectory. To validate collision avoidance, we

show two applications on a physical robot.

6 Results

We now discuss the results of our empirical experi-

ments. We first validate our “Relaxed-Rigidity” planner

on a real robot comparing with alternative formulations

for in-grasp manipulation. We then discuss results from

our extensions to the “Relaxed-Rigidity” planner. In all

plots results correspond to objects grasped with three

fingers, unless otherwise stated. For every trajectory

that is run on the robot, the position error and orienta-

tion error is recorded. The errors are plotted as a box

plot (showing first quartile, median error, third quar-

tile) with whiskers connecting the extreme values.
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Fig. 6: A comparison of the relaxed-rigidity constraint

performance with alternative formulations. Top: Posi-

tion error Middle: Position error% Bottom: Orientation

error%. The median position error decreases for all ob-

jects with our method. Except for Banana and Jello,
the orientation error% improves for our method for all

objects.

6.1 Relaxed-Rigidity Physical Robot Validation

The position error and orientation error for all trials

across all objects are shown in Fig. 6. Our method has

the lowest median position error across all objects. The

maximum error across all objects is also much smaller

for our method than assuming a point contact model

with friction. The “Position Error%” plot shows that

our method-“Relaxed-Rigidity” is closer to the desired

pose than the initial pose for all trials with a maximum

error of 75%. In contrast “PC” obtains error greater

than 100% for several trials, showing the object is mov-

ing further away from the desired pose than at the ini-

tial pose. Additionally, one can see that our method
has a lower variance in final position than the com-
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Table 1: Summary of results with the best value in bold

text. The errors are the median of all trials. “relaxed-

1” refers to “relaxed-position” and “relaxed-2” refers to

“relaxed-position-orientation”.

Method Suc.%
Pos. Error%

Error(cm) Pos. Orient.
PC 95 1.69 36.81 9.74

relaxed-1 91 1.64 30.95 10.43
relaxed-2 93 1.54 29.19 9.84

Relaxed-Rigidity 100 1.32 28.67 9.86

peting methods across nearly all objects. Four samples
from our experiments are shown in Fig. 5 with overlaid
current object pose and desired object pose.

Table 1 shows the success rate and the median er-

rors across all these methods. The success rate and po-
sition error improve as we add additional costs from
our method. It is also seen that our method performs
better than assuming a point contact model. The point

contact model also resulted in dropping the object on

25 out of 500 trials, while our proposed method never

dropped an object. The orientation error for all meth-

ods remains low across all objects except for Fork where

the fingertips are larger than the object causing it to roll
with very small orientation changes at the fingertips. In

all objects except Banana and Jello, the orientation er-
ror% improves with our method. A large improvement

in orientation error is seen in Spatula, an object for

which the point contact model with friction achieves

relatively high orientation error.

To show our method generalizes to n-fingered grasps,

we show results for 2-fingered and 4-fingered grasps in
Fig. 7. We note that 2-fingered grasps tend to shake
the object more during trajectory execution than 3-

fingered grasps. With 4-fingered grasps, the ring finger

sometimes loses and regains contact, adding little ben-

efit over 3-fingered grasps.

6.2 Effect of Joint Acceleration

The inclusion of joint acceleration cost term, gives a
smooth velocity profile for the object during the in-
grasp manipulation as shown in Fig. 8. Linear inter-
polation has sudden jerks in the object trajectory if

the goal pose is not reachable along the linear path as

seen in Fig. 8. There was no significant difference in

planning time and offline convergence errors between

the two formulations. However, physical robot valida-

tion shows the the joint acceleration generates lower

maximum position error and similar median position

error to the linear interpolation, as shown in Fig. 9.

The orientation error for Banana sees a significant im-

t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 7: Execution of in-grasp manipulation for four fin-

gered and two fingered grasps. Frame “O” is the object

pose and frame “G” is the goal pose. With the Ba-

nana, the ring finger loses contact during execution at
t=0.4s but makes contact again at t=0.8s and the ob-

ject reaches the desired pose.
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Fig. 8: (a) shows the object velocity from the gener-

ated trajectory and (b) shows the object pose trajec-

tory from “waypoint-interp” method as fat axes frames

and “joint-acc” trajectory as slim tall axes frames. The

waypoint interpolation method sees a sudden jump at

timestep 8 which creates a jerk on the object as seen
in (b).

provement with “joint-acc” as it prevented rolling of the

object during manipulation. The Jello object sees a sig-

nificant reduction in position error as the smooth path

reduces inertia caused by the powder moving inside the

box. We infer the following from our validation: the ex-

clusion of linear interpolation for the waypoint allows

for finding a smooth trajectory to the desired pose, the

smooth acceleration reduces rolling of the object due to

rapid changes to object velocity, and Objects with non-

rigidly attached parts have lower error as the smooth

acceleration keeps inertia at a minimum.
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Fig. 9: Plots show the position and orientation error

in reaching the desired pose across the four methods-

“waypoint-interp” is our vanilla version, “joint-acc” is

with our joint acceleration cost, and the methods with

suffix “-fb” are run with the object pose feedback con-

troller. Variance is reduced with the use of the feedback

controller across all objects. Object Jello sees a signif-

icant reduction in position error due to reduced object

dynamics excitation.

6.3 Object Pose Feedback Controller

We now show results for incorporating the object pose
feedback controller on the original relaxed-rigidity plan-

ner with linear interpolation costs. Fig. 9 shows that the
feedback controller drastically reduced the variance in
the position and orientation error. We note that non-
trivial noise on the object pose persists, caused by the

RGB-D based object tracker. This manifests by the lack

of error reduction by the feedback controller when er-

ror is less than 1cm. Objects with an axis of symmetry

such as the Apple object proved particularly difficult
to track, since the particle filter was unable to find a

unique pose.

6.4 Collision Avoidance

An interesting application of in-grasp manipulation is

to avoid collisions in a cluttered environment by mak-

ing small changes to the object pose. We setup two

such experiments and used our collision avoidance ex-

tension to generate trajectories. Fig. 10 shows our in-
grasp planner avoiding collisions with the environment
while reaching the desired pose. This shows the effectiv-

ness of making small changes to the object pose to avoid

obstacles in the environment which otherwise would re-

quire large motions with the arm. Adding the collision

avoidance cost increased the planning time as we com-

pute the signed distance in every iteration between the

grasped object and the environment which we decom-

pose into many convex obstacle. It took approximately

120 seconds to generate each collision free plan.

7 Discussion

We found several open questions to explore from ex-

tensive validation of our in-grasp manipulation planner

which we discuss below.

7.1 Improving Manipulation Accuracy

Our planner was able to achieve an average position er-

ror of 13mm without feedback of the object pose. While

this might seem large, there are many tasks that could

be performed with this accuracy. One task we explore

in this paper is moving a spoon into a cup (fig. 10).

If only the arm is used to move the spoon, a very

precise arm controller or visual servoing is required to

move inside the cup. With in-grasp manipulation, the

spoon is moved inside the cup without visual servo-

ing, using the dexterity in the fingers. At a broader

scale, in-grasp manipulation cannot achieve large ob-

ject pose changes, as the fingers have limited reachabil-

ity. We have started exploring methods to switch to a

different fingertip grasp to extend the reachable object

poses (Sundaralingam and Hermans (2018)).

Two potential bottlenecks prevent us from improv-

ing the accuracy through online replanning: slow plan-

ning time and poor object pose tracking accuracy. Our

current trajectory optimization implementation takes

on an average 2 seconds to generate a trajectory. The

optimization is computationally expensive as the reach-

ability of the fingertips and the objective function are

highly non-convex.

This led us to use a Jacobian object pose feedback
controller (Sec. 4.3). The feedback controller was unable

to reduce the median object position error to less than

1cm. Upon further analysis, we found the object pose

tracker was not precise to less than 1cm. We will explore

improving the object pose tracking system and study

the effect on manipulation accuracy. We will revaluate if
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t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 10: Images showing collision-free manipulation of objects during trajectory execution. The Banana object

moves around the pear fruit to avoid a collision and reaches its desired pose. The Fork object moves to inside the
cup avoiding the brim of the cup.

the Jacobian controller is sufficient or online replanning
is a necessity to improve accuracy.

7.2 Losing Contact During Manipulation

Physical experiments showed some of the fingers losing

contact on the object during manipulation and making

contact again before the manipulation is complete when

four fingers were used as seen in Fig.7. This did not lead

to dropping of the object. We will be exploring adding
tactile feedback to maintain contact with the object.
We never observed the object slipping from the grasp
during manipulation.

7.3 Cost vs Constraints

Our approach formulates the “relaxed-rigidity” terms

as part of the cost as we want to minimize changes

to the initial grasp as much as possible. Another per-

spective would be to formulate them as inequality con-

straints with thresholds (i.e. max allowed deviations).

Formulating them as constraints provides a potential

advantage of faster planning times. However, finding

the thresholds for the “relaxed-rigidity” terms that would

lead to successful executions on the physical robot is

not straightforward. Additionally, a constraint based

approach treats all feasible solutions equally while our

approach attempts to minimize the deviation when pos-

sible.

8 Conclusion

We presented an in-grasp manipulation planner, which
given only the initial joint angles, the joint limits, and

the initial object pose, solves for a joint-level trajec-
tory to move the object to a desired goal pose. We im-
plemented and experimentally validated the proposed
method on a physical robot hand with ground truth er-

ror analysis. The results show that our relaxed-rigidity

constraint allows better real-world performance than

assuming a point contact model. We show how to use

our planner with a collision avoidance cost to manipu-
late the grasped object in a cluttered environment. We
show the ability to reduce unmodeled dynamic effects

by adding a cost for smooth joint space paths. We show

that use of an object pose feedback controller reduces

the variance in trajectory execution.
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