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Abstract—This paper proposes a novel approach to performing
in-grasp manipulation planning: the problem of moving an object
with reference to the palm from an initial pose to a goal pose
without breaking or making contacts. Our method to perform
in-grasp manipulation uses kinematic trajectory optimization
which requires no knowledge of dynamic properties of the
object or the robot. We define a cost function that attempts
to maintain the initial grasp points, while relaxing the constraint
that the contacts between finger and object remain rigid. Hence,
we name this new formulation relaxed-rigidity constraints. We
implement our approach on an Allegro robot hand and perform
experiments on 10 objects from the YCB dataset. However,
the implementation would work for any object the robot can
grasp. We perform thorough analysis and compare to alternative
optimization formulations. Our method reaches the desired object
pose with a median position error of 13mm across all of the 500
trials without ever dropping the object.

I. INTRODUCTION AND MOTIVATION

The problem of robotic in-hand manipulation–changing the

relative pose between a robot hand and object, without placing

the object down–remains largely unsolved. Research in in-

hand manipulation has focused largely on using full knowledge

of the mechanical properties of the objects of interest in finding

solutions [1, 12, 22, 23]. This reliance on object specific

modeling makes in-hand manipulation expensive and some-

times infeasible in real-world scenarios, where robots may

lack high-fidelity object models. Learning-based approaches

to the problem have also been proposed [20, 31]; however,

these methods require significant experience with the object of

interest to work and learn only a single motion primitive (e.g.

movement to a specific goal pose). Solving the general in-

hand manipulation problem using real world robotic hands

will require a variety of manipulation skills [3]. As such,

we focus on a subproblem of in-hand manipulation: in-grasp

manipulation where the robot moves an object under grasp

to a desired pose without changing the initial grasp. We

explore a purely kinematic planning approach for in-grasp

manipulation motivated by recent successes in kinematic grasp

planning [6, 7].

Having a successful in-grasp manipulation planner would

allow robots to change a grasped object’s pose without requir-

ing full arm movement or complex finger gaiting [17]. Many

tasks requiring a change in relative pose between the hand and

the grasped object do not require a large workspace and can be

performed without changing the grasp. Example tasks include

turning a dial, reorienting objects for insertion, or assembling

small parts such as watch gears. This is especially beneficial

in cluttered environments where small movements would be

Fig. 1: Example trajectory produced by our method executed on
the Allegro hand. The trajectory moves the Lego from its initially
grasped pose to a desired pose. The robot follows the joint space
trajectory produced from our trajectory optimizer with a PD based
joint position controller. The images on the right show frames from
execution where t refers to the timestep.

preferred. This paper addresses the in-grasp task with a purely

kinematic planning approach. By attempting to maintain the

contact points from the initial grasp during manipulation, we

do not require any detailed models of the grasped object.

The in-grasp manipulation problem is under-actuated, as the

object’s states are not fully or directly controllable. As such,

it does not immediately offer a kinematic solution. A naive

approach would be to model all contacts between the object

and robot as rigid links and plan for a desired object pose as if

the robot were a parallel mechanism. However, in most robotic

hands, the fingers have fewer degrees of freedom (DOF) than

necessary to control a 6 DOF world pose. Thus, we introduce

a novel cost function which relaxes the rigidity constraints

between the object and fingers. The cost function penalizes the

robot fingertips for changing the relative positions and orien-

tations between each other from those used in the initial grasp.

We name this cost function the relaxed-rigidity constraint. We

combine relaxed-rigidity constraints for all fingers with cost

terms that encourage the object’s movement to the desired

pose. This combined cost function defines the objective for our



purely kinematic trajectory optimization. The result allows for

small position and orientation changes at the contact locations,

while maintaining a stable grasp as the object moves toward

the desired pose. Fig. 1 shows an example trajectory from our

planner.

Our approach to in-grasp manipulation directly solves for

a joint space trajectory to reach a task space goal, in contrast

to previous methods [21, 23] which rely on separate inverse

kinematic (IK) solvers to obtain joint space trajectories. Our

direct solution is attractive, as IK solutions become complex

when a robot is under-actuated in terms of the dimensions of

the task space (i.e. the end-effector of a 4 joint manipulator

cannot reach all orientations in a 6 dimensional task space

for a given position). Our approach additionally handles hard

constraints on the robot’s joint positions and velocities. The

problem is efficiently solved as a direct optimization using a

sequential quadratic programming (SQP) solver. Our method

allows for changing the object’s pose without the need to know

the dynamic properties of the object or the contact forces on

the fingers. Currently, we perform the planned trajectory on

the robot with no feedback of the object’s pose.

This paper makes the following contributions validated with

real-world experiments:

1) We demonstrate that a purely kinematic trajectory op-

timization sufficiently solves a large set of in-grasp

manipulation tasks with a real robot hand.

2) We enable this kinematic solution by introducing a novel

relaxation of rigid-contact constraints to a soft constraint

on rigidity expressed as a cost function. We name this

the relaxed-rigidity constraint.

3) Our method directly solves for joint configurations at

all time steps, without the need of a separate inverse

kinematics solver, a novel contribution over previous

trajectory optimization approaches for in-hand manip-

ulation (e.g. [23]).

4) We are the first to extensively validate an in-grasp

manipulation planner on a real robot hand. We do so

with multiple objects from the YCB dataset [5] and

introduce relevant error metrics, paving the way for a

unified testing scheme in future works (c.f. Section IV).

We organize the remainder of the paper as follows. In-hand

manipulation research related to our approach is discussed

in Section II. We follow this with a formal definition of the

problem and a detailed explanation of our approach in Sec-

tion III. We then discuss implementation details and define our

experimental protocol in Section IV. We analyze the results of

extensive robot experiments in Section V followed by a final

discussion of conclusions and future work in Section VI.

II. RELATED WORK

In-hand manipulation has been studied extensively [4, 8, 15,

22]. The topic is often referred to as dexterous manipulation

(e.g. [12]) or fine manipulation (e.g. [17]). We choose the term

in-hand manipulation to highlight the fact that the operations

happen with respect to the hand and not the world or other

parts of the robot. We believe that dexterity can be leveraged

for a number of tasks, which do not fundamentally deal with

in-hand manipulation, and that a robot can finely manipulate

objects without the need for multi-fingered hands or grasping.

This section covers those methods that are most relevant to

our approach and does not discuss in detail methods for finger

gaiting (e.g. [17, 28]) or dynamic in-hand manipulation [2, 30].

Li and colleagues [22] developed a computed torque con-

troller for coordinated movement of multiple fingers on a robot

hand. The controller takes as input a desired object motion and

contact forces and outputs the set of finger torques necessary

to create this change. The controller requires models of the

object dynamics (mass and inertia matrix) in order to compute

the necessary control commands. The authors demonstrate

in simulation the ability for the controller to have a planar

object follow a desired trajectory, when grasped between

two fingers. Härtl [15] factors forces on objects and force

to joint torque conversions to perform in-hand manipulation

accounting for slippage and rolling. An analytical treatment

of dynamic object manipulation is explored with ways for

reducing the computations required.

Han et al. [12, 13] attempt in-hand manipulation with rolling

contacts and finger gaiting requiring knowledge of the object

surface. They solve for Cartesian space finger-tip and object

poses. Results for rolling contacts are demonstrated using flat

fingertips to manipulate a spherical ball. The robot tracks

the end-effector velocities using the manipulator Jacobian to

determine the joint velocities.

Bicchi and Sorrentino [4] analyze the kinematics of rolling

an object grasped between fingers. The authors present a

planner for rolling a sphere between two large plates acting as

fingers. This is achieved through creating a state feedback law

of vector flow fields. All these early methods require extensive

details about the object which is hard to obtain in the real

world and is inefficient when attempting to manipulate novel

objects.

In-hand manipulation research has diverged in terms of

approaches. Mordatch et al. [23] formalize in-hand manipu-

lation as an optimization problem. They solve for a task space

trajectory and obtain joint space trajectories for the robot using

an IK solver independent of their optimization. The trajectory

optimization approach factors in force closure, but uses a joint

level position controller to perform the manipulation assuming

they have a perfect robot dynamics model to convert end-

effector forces to positions. Experimental evaluation is shown

only in simulation.

Similar to our approach, Hertkorn et al. [16] seek to find

a trajectory to a desired object pose without changing the

grasp. Their approach additionally solves for an initial grasp

configuration to perform the desired motion in space. They

discretize the problem by creating configuration space graphs

for different costs and use a union of these graphs to choose a

stable grasp. They perform an exhaustive search through this

union of graphs to find the desired trajectory. Their approach

does not scale, even to simple 3D problems, with multi-

fingered robot hands as stated by the authors and they show no

real-world results. Their method is computationally inefficient



as the reported time for finding a single feasible trajectory

was 60 minutes for a two fingered robot with 2 joints each. In

contrast, we efficiently and directly solve for joint positions

in the continuous domain using trajectory optimization.

Andrews and Kry [1] take a hierarchical approach to in-

hand manipulation by splitting the problem into three phases:

approach, actuation, and release. Their method uses an evo-

lutionary algorithm to optimize the individual motions. This

requires many forward simulations of the full dynamical

system and does not leverage gradient information in the

optimization. Another drawback, as stated by the authors, is

that their approach cannot be applied to objects with complex

geometry.

Hang et al. [14] explore grasp adaptation to maintain a stable

grasp and compensate for slippage or external disturbances

with tactile feedback. They use the object’s surface geometry

to choose contact points for grasping and when performing

finger gaiting to maintain a stable grasp. Their method could

be used to obtain an initial stable grasp which could then be

used in our approach to move the object to a desired pose.

Li et al. [21] use two KUKA arms to emulate in-hand

manipulation with tactile and visual feedback to move objects

to a desired pose. The use of flat contact surfaces limits

the possible trajectories of the object. The use of a 7 joint

manipulator as a finger also allows for reaching a larger

workspace than common robotic hands which are mostly

limited to 4 joint fingers. The evaluation is limited to position

experiments and single axis orientation changes.

Rojas and Dollar [27] present a method to analyze the

kinematic-motion of a hand with respect to a grasped object.

This tool could be used to find feasible goal poses for an object

without changing the current grasp similar to [16]. However

the authors are motivated by designing dexterous robot hands

and do not perform any planning with their technique.

Kumar et al. [19] examine the use of model-predictive

control for a number of tasks including in-hand manipulation.

They rely on hand synergies and full models of the robot

and object dynamics to compute their optimal controllers.

However, they recently built on this approach [20] and used

machine learning to construct dynamics models for the object-

hand system. These models could then be used to create a

feedback controller to track a specific learned trajectory. They

show results on a real robot hand with a high number of states

and actuators. However, their method requires retraining to

be used in manipulating a new object or moving to a new

goal pose. Van Hoof et al. [31] use reinforcement learning

to learn a policy for rolling an object in an under-actuated

hand. The resulting policy leverages tactile feedback to adapt

to different objects, however they must learn a new policy

if they were to change the desired goal. Finally, while these

learning-based methods show promise in rapidly converging

to a desired controller, they still require multiple runs on the

robot.

In contrast, we perform in-grasp manipulation on a real

robot hand with novel objects, without requiring extensive

object information or performing any iterative learning.

III. PROBLEM DEFINITION AND PROPOSED APPROACH

We define the problem of in-grasp manipulation as finding

a trajectory of joint angles Θ = [Θ1, . . . ,ΘT ] that moves the

object from its initial pose X0 at time 0 to a desired object pose

Xg at time T without changing the grasp on the object. We

address this problem under the following simple assumptions:

1) The object’s pose can only be affected by the robot and

gravity, i.e. there are no external systems acting on the

object.

2) The object is rigid.

3) The initial grasp is a stable grasp of the object.

4) The desired object pose is in the reachable workspace

of the fingertips.

We formulate our solution as a nonlinear, non-convex con-

strained kinematic trajectory optimization problem:

min
Θ

Eobj(ΘT , Xg) + k1

T−1
∑

t=0

Eobj(Θt,Wt)

+ k2

T
∑

t=0

Epos(Θt) + k3

T
∑

t=0

Eor(Θt) (1)

s.t.

Θmin � Θt � Θmax, ∀t ∈ [0, T ] (2)

− Θ̇max � Θt−1 −Θt

∆t
� Θ̇max, ∀t ∈ [1, T ] (3)

The first constraint enforces the joint limits of the robot hand,

while the second inequality constraint limits the velocity of

the joints to prevent rapid movements. The scalar weights,

k1, k2, k3, on each cost term allow us to tune the trade-off

between the four cost components. Wt defines the waypoint of

the object pose at time t computed automatically as described

below.

In order to achieve a purely kinematic formulation, we plan

with a number of approximations, which we validate with

experiments in Sec.V. We now describe the components of

the cost function in detail.

A. Object Pose Cost

The first term in the cost function (Eq.1), Eobj(ΘT , Xg),
is designed to minimize the euclidean distance between the

planned object pose at the final time step XT to the desired

final object pose Xg . Our kinematic trajectory optimization

approach assumes no knowledge of the dynamic properties

of the object, as such we can not directly simulate the object

pose Xt during our optimization. Instead, we leverage the fact

that in-grasp manipulation assumes no breaking or making of

contacts during execution, meaning, in the ideal case, contact

points between the robot and object remain fixed.

In our approach we thus plan as if the contact point between

the thumb-tip1 and the object is rigid. This allows us to define

a reference frame for the object X with respect to the thumb-

tip i such that the transformation between the thumb-tip and

1The choice of thumb is arbitrary and made only to clarify the discussion.
Any fingertip could be chosen to define the reference frame for the object.



(a) t = 0 (b) t = T

Fig. 2: Depiction of a trajectory optimization solution at the initial and final time steps. The thumb-tip frame is shown as frame i, finger f ’s
tip frame is f , and w defines the world frame. The initial pose of the object with the grasp is shown in (a), the object has to reach the goal
pose (b). Our approach models the thumb frame as rigidly attached to the object during the trajectory, while finger f has a relaxed-rigidity
constraint. The effect can be seen in (b), where the relative orientation and position between frames i and f have changed from the initial
grasp at t = 0. The i

0P f , i
TP f , c0 and cT terms from Sec. III-B are shown as green, blue, orange and red vectors respectively. θi1-i3, θf1-f3

are the joint angles of thumb and finger f .

the object remains fixed during execution. As the thumb-tip

moves with respect to the world frame w, we compute the

transform to the object frame as

wTX = wT i · iTX (4)

where the superscript refers to the reference frame and the

subscript to the target frame. The object’s transformation

matrix is represented by iTX with reference to thumb-tip i.

We can now transform the desired object pose Xg into a

desired thumb pose Gi in the world frame w. The cost function

Eobj can now be formally defined as

Eobj(ΘT , Xg) = ||wTGi − w
TF i||22 (5)

where, w
TGi = Xg · XT i and w

TF i = FK(ΘT , i) gives the

pose of the thumb-tip i with reference to the world frame.

Thus by using the forward kinematics (FK) internally within

the cost function we can directly solve for the joint angles of

the thumb at the desired object pose.

The second term
T−1
∑

t=0

Eobj(Θt,Wt) present in the cost

function (Eq.1) encourages shorter paths to the desired pose.

We define the waypoints Wt for every time-step t be linearly

interpolated from the initial object pose to the desired object

pose Xg , equally spaced across all timesteps. We weigh this

term at a very low scale relative to the other cost terms,

to encourage a shorter path as a linear path is not always

guaranteed.

B. Relaxed-Rigidity Constraints

Since most robotic fingers are under-actuated with respect to

possible 6 DOF fingertip poses, we can’t apply the same rigid-

contact constraint with respect to the object pose, as we did for

the thumb for all the remaining fingers. Doing so would reduce

the reachable space for the remaining fingers, resulting in a

smaller manipulable workspace for the object (manipulable

workspace being the workspace covering all possible object

poses for a given grasp). Instead, we relax the rigid-contact

constraint for all other fingers in the grasp, allowing for a

larger manipulable workspace. The remaining two terms in

the cost function (Eq.1), Epos and Eor, define our novel

relaxed-rigidity constraint. The combined effect of the terms

encourages the fingertips to remain at the same contact points

on the object throughout the trajectory.

We define the cost term Epos(Θt) to maintain the initial

relative positions between the thumb, i, and the remaining

fingertips, f throughout execution:

Epos(Θt) =

n
∑

f=1

|| i
0
P f − i

tP f ||22 (6)

where i
tP f = iTw ·FKP (Θt, f) defines the fingertip position

for finger f in the thumb frame i at time t and FKP (Θt, f)
computes the position of fingertip f for joint configuration Θt.

Combined with the object pose cost, which moves the thumb

towards the goal pose, this cost minimizes deviation from the

initial grasp, while moving towards the goal pose.

The last cost term Eor(Θt) encourages the other fingers to

maintain their relative orientation to the thumb to be the same

as that in the initial grasp. Maintaining this cost across all

three orientation dimensions, would again over-constrain the

problem to the full rigidity constraint. We relax this constraint

by introducing a weight vector ψ which defines a relative

preference for deviation in different orientation dimensions

Eor(Θt) =

n
∑

f=1

||(cft − c
f
0
) · ψ||2

2
(7)

where c
f
t = FKi

RPY (Θ, f) computes the roll, pitch, yaw of

the unit vector between the thumb, i and finger f at time

t. Fig. 2 illustrates the vectors used in the relaxed-rigidity

constraints.

IV. IMPLEMENTATION AND EXPERIMENTAL PROTOCOL

We now describe important details relating to our imple-

mentation and the setup of our experiments.



Fig. 3: Objects from the YCB dataset with labels below each of them
used in our experiments.

Fig. 4: Example grasps tested with various objects in our method.

A. Trajectory Generation and Robot Execution

Direct methods for trajectory optimization, such as sequen-

tial quadratic programming (SQP), have shown promising

results in robotics [24, 25, 29]. We solve our trajectory opti-

mization problem using SNOPT [11] an SQP solver designed

for sparsely constrained problems. We run the solver with a

maximum limit of 5000 iterations using analytical gradients

for the costs and constraints. The computer used to run the

solver and experiments is an Intel i7-4790K with 32 GB of

RAM running Ubuntu 14.04 with ROS Indigo [26]. The robot

used is the Allegro Hand, which has four fingers with 4 joints

each2. We solve for T = 10 time steps with each time step

being ∆t = 0.167s long. We expand the obtained solution to

a higher resolution of 100 time steps by linearly interpolating

2http://www.simlab.co.kr/Allegro-Hand.htm

Fig. 5: Desired object centroid poses for all experiments. The colors-
red, blue and green in each frame represent the x, y and z axes. The
palm frame is represented by ’O’ with arrows.

the joint trajectories. We limit the joint velocities to be less

than 0.6rad/s. Our approach has four weights- three on scaling

the importance of each cost term-k1, k2, k3 and a projection

weight ψ for the orientation cost term Eor.

The orientation cost Eor reduces orientation changes along

the weight vector ψ. Ideally, we would want to reduce the

impact of any contact model on the manipulation task by

having weights across all three dimensions. However, this

would reduce the reachable workspace of the manipulation

task as the Allegro hand is under-actuated with respect to the

6 DOF poses. Hence, we chose to reduce orientation changes

along a single axis, which covers the largest workspace of

fingertip positions. This is the y-axis with respect to the palm

for the index, middle and ring fingers, making ψ =
[

0 1 0
]

as seen in Fig. 5. We consider this weight as a trade off be-

tween allowing a larger manipulation workspace and enforcing

smaller changes at contact points. We see in Sec. V-B that

restricting orientation changes along one axis improves the

position error over assuming a point contact model.

The remaining three weights model the relative importance

between the cost terms of our optimization. We want the

robot to always maintain contacts close to the initial grasp

during manipulation, this is taken care of by large value for

k2. Keeping the initial orientation is less important, allowing

k3 to be less than k2. The weight for waypoints k1 should help

guide the fingers to the goal pose, while being low enough to

allow for non-linear trajectories when linear trajectories are

not feasible. We examined various weights under this scaling

and found k1 = 0.09, k2 = 100, k3 = 1 to work well across

a variety of trajectories and objects. For k2 < 1.0, the hand

dropped the object when unreachable object poses were given.

The chosen weights, however, were able to maintain the object

in-grasp while still moving the object towards the desired pose.

The allegro hand runs an on-board PD based joint position

controller. Our open loop implementation consists of sending

the joint space trajectory over 100 time steps at 60 Hz. Solving

for a single trajectory takes approximately 13 seconds on

average.

B. Comparison Methods

Relatively little empirical evaluation has been performed

for in-hand manipulation on real robot hands. The lack of a

common benchmarking scheme prohibits us from comparing

directly with methods described in Sec. II. Hence, we compare

our method with two formulations representing two extremes

of contact models. The two methods are formulated as a

trajectory optimization problem similar to our method with

different cost functions. The first method assumes a rigid

contact model between the object and the fingertips, with the

cost function:

n
∑

i=0

||(wTGi−w
TF i)||22+w1

T−1
∑

t=0

n
∑

i=1

||(wtT 0 ·0tTX ·XtT i−w
tF i)||22

(8)

we name this method “IK-rigid”.

The second method assumes a point contact with friction

model (“PC”) for the fingertips. That is we attempt to keep



Fig. 6: Images showing manipulation of objects during trajectory execution. The trajectories are generated from our method(“Relaxed-
Rigidity”). The frame ’O’ represents the current object pose and ’G’ frame is the desired object pose. Tuna being heavier than all other
objects has a larger error due to the PD controller of the hand being insufficient to counteract the gravitational forces. Banana, having a
complex surface also shows a larger error than objects with a flat surface. Markers used for ground truth collection only. Additional execution
of different objects are shown at https://youtu.be/Gn-yMRjbmPE.

the fingertip positions fixed with respect to the object, while

allowing the relative orientation to change. This is a simplifi-

cation of the model formulated in [22] to the cost function:

n
∑

i=0

||(wTGi−w
TF i).α||22+w1

T−1
∑

t=0

n
∑

i=0

||(wtGi−w
tF i) ·α||22 (9)

where w
tGi defines the desired fingertip pose at time t. We

generate the desired fingertip poses by computing the finger-

tip’s pose in the object frame from object pose way-points

Wt, computed via linear interpolation in the same manner

as our approach. Since point contact with friction assumes

that orientation changes at the contact points do not affect

the object pose, the cost function only applies to fingertip

positions and hence α =
[

1 1 1 0 0 0
]

. This method

does not model the object explicitly in the optimization. As

such, the object pose cannot be directly obtained from a joint

space trajectory without execution. The weight is chosen as

w1 = 10−2.

C. Experimental Protocol and Evaluation

We selected objects of different size, texture and shape from

the YCB dataset [5], shown in Fig. 3, as a benchmarking set.

The ten objects used are: screwdriver, Lego, fork, banana,

spatula, toy plane, Jello, tuna, apple, and orange. A variety

of three-fingered grasps were performed across the objects to

show the reachability of the proposed method; examples can

be seen in Fig. 4.

The set of experiments consist of moving the object under

grasp to a goal pose, with ten unique reachable goal poses and

two initial grasps per object. Finding feasible desired poses

given an initial grasp is a complex problem [16, 27] and we

do not formalize a method to obtain them. Instead, we focus on

obtaining trajectories to a reachable pose and not on finding

reachable poses. We obtain goal poses by having a human

move the object in-grasp to the desired pose with the robot in

gravity compensation mode. Any other method could be used

to obtain desired poses. We show the distribution of the desired

poses in Fig. 5. The Euclidean distance to the desired positions

from the initial object positions, range from 0.8cm to 8.33cm

https://youtu.be/Gn-yMRjbmPE


with a mean of 4.87cm. Desired poses with small positional

change have a large orientation change. One trajectory for each

goal pose was generated. To account for variation in execution

and evaluate robustness, 5 trials are run for each trajectory

giving a total of 50 trials per object. The difference in initial

position between trials has a mean error of 0.59cm with an

associated variance of 0.09cm. A total of 2000 trials are run

across different methods to evaluate our proposed method.

The ground truth of the object pose is obtained using

Aruco markers [9, 10]. The initial pose of the object is

obtained by placing the object in the hand and forming a

grasp manually. Once the grasp is set, the joint angles are

recorded and the object pose with respect to the palm link

is obtained using the Aruco markers. We align the object

with the initial pose used for trajectory generation using the

markers and robot forward kinematics. Execution of all trials

are recorded (video, robot frames, and object poses). All

associated data is available (https://robot-learning.cs.utah.edu/

project/in hand manipulation) to facilitate direct comparison.

We define the following error metrics for evaluating in-grasp

manipulation. The position error is computed as the Euclidean

distance between the reached position and the desired position

of the object. Additionally, we report position error normalized

with respect to the length of the trajectory, computed as

the Euclidean distance between the initial and desired object

positions. We report this normalized position error as “Position

Error%”.

The second metric measures the final orientation error, cal-

culated using quaternions, as the difference between rotation

frames is not well defined using Euler angles [18].

errorient = 100× min(||qd − q||2, ||qd + q||2)√
2

(10)

where qd is the unit quaternion of the desired object pose and

q is the unit quaternion of the object pose reached. This error

is in the range [0,
√
2] and hence normalized with

√
2 and

stated as “Orientation error%”. Finally, where appropriate, we

report as failed attempts trials where the robot dropped the

object during execution.

V. RESULTS

For every trajectory that is run on the robot, the position

error and orientation error is recorded. The errors are plotted

as a box plot (showing first quartile, median error, third

quartile) with whiskers connecting the extreme values. The

following subsections discuss the effectiveness of our method

with respect to different criteria. In all plots results correspond

to objects grasped with three fingers, unless otherwise stated.

A. Convergence of Optimization to Desired Object Pose

We first compare the results of different cost formulation

within the trajectory optimization framework offline. Four

methods were tested: (1) “IK-rigid” described in Sec. IV-B; (2)

“relaxed-position” which uses our proposed relaxed-rigidity

position cost, but not the orientation cost or the waypoint

cost; (3) “relaxed-position-orientation” which uses the full

relaxed rigidity cost formulation with the relative position and
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Fig. 7: Comparison of four different costs formulations for trajectory
optimization: IK-rigid, relaxed-position, relaxed-position-orientation
and Relaxed-Rigidity. Results show the position error between the
desired final object pose and the final object pose obtained by the
trajectory optimization. Bottom plot shows the same results without
“IK-rigid” for improved reading.

orientation costs but not the waypoint cost; and (4) “Relaxed-

Rigidity” which uses all our costs. We do not show offline

results for the “PC” method as computing the object pose

from the solution is not possible as the optimization does not

internally simulate the object’s pose. However, we compare to

this method in our real-robot experiments below.

The position error between the desired object pose and

the final object pose obtained from the trajectory optimiza-

tion are plotted in Fig. 7. It is evident that “IK-rigid” has

difficulty reaching the desired object position, a result of

the problem being over-constrained. The “relaxed-position”

method incurs the least error, as there is no cost imposed

on the orientation on the relaxed finger constraints. However,

all relaxed-constraint approaches perform quite similarly. This

analysis clearly shows how the “IK-rigid” method has a limited

workspace, as such we do not report experimental results for

this method on the actual robot.

B. Reaching Desired Object Poses

The position error and orientation error for all trials across

all objects are shown in Fig. 8. Our method has the lowest

median position error across all objects. The maximum error

across all objects is also much smaller for our method than

assuming a point contact model with friction. The “Position

Error%” plot shows that our method-“Relaxed-Rigidity” is

closer to the desired pose than the initial pose for all trials

with a maximum error of 75%. In contrast “PC” obtains error

greater than 100% for several trials, showing the object is

moving further away from the desired pose than at the initial

https://robot-learning.cs.utah.edu/project/in_hand_manipulation
https://robot-learning.cs.utah.edu/project/in_hand_manipulation
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Fig. 8: A comparison of the relaxed-rigidity constraint performance
with alternative formulations. Top: Position error Middle: Position
error% Bottom: Orientation error%. The median position error de-
creases for all objects with our method. Except for Banana and Jello,
the orientation error% improves for our method for all objects.

TABLE I: Summary of results with the best value in bold text. The
errors are the median of all trials. “relaxed-1” refers to “relaxed-
position” and “relaxed-2” refers to “relaxed-position-orientation”.

Method Success%
Position Error%

Error(cm) Position Orientation

PC 95 1.69 36.81 9.74

relaxed-1 91 1.64 30.95 10.43

relaxed-2 93 1.54 29.19 9.84

Relaxed-Rigidity 100 1.32 28.67 9.86

pose. Additionally, one can see that our method has a lower

variance in final position than the competing methods across

nearly all objects. Four samples from our experiments are

shown in Fig. 6 with overlaid current object pose and desired

object pose.

Table I shows the success rate and the median errors across

all these methods. The success rate and position error improve

as we add additional costs from our method. It is also seen

that our method performs better than assuming a point contact

model. The point contact model also resulted in dropping the

object on 25 out of 500 trials, while our proposed method

never dropped an object. The orientation error for all methods

Fig. 9: Execution of in-grasp manipulation for four fingered and
two fingered grasps. Frame “O” is the object pose and frame “G” is
the goal pose. With the Banana, the ring finger loses contact during
execution at t=0.4s, however the ring finger makes contact again at
t=0.8s and the object reaches the desired pose. With the Lego, all
fingertips maintain contact during execution.

remains low across all objects except for Fork where the

fingertips are larger than the object causing it to roll with

very small orientation changes at the fingertips. In all objects

except Banana and Jello, the orientation error% improves with

our method. A large improvement in orientation error is seen

in Spatula, an object for which the point contact model with

friction achieves relatively high orientation error.

C. Generalization to n fingers

To show our method generalizes to n-fingered grasps, we

show results for 2-fingered and 4-fingered grasps in Fig. 9.

We note that 2-fingered grasps tend to shake the object more

during trajectory execution than 3-fingered grasps. With 4-

fingered grasps, the ring finger sometimes loses and regains

contact, adding little benefit over 3-fingered grasps.

VI. CONCLUSION AND FUTURE WORK

We presented a generic in-grasp manipulation planner,

which given only the initial joint angles, the joint limits,

and the initial object pose, solves for a joint-level trajectory

to move the object to a desired goal pose. The proposed

method is implemented and experimentally validated on a real

robot hand with ground truth error analysis. The results show

that our relaxed-rigdity constraint allows for lower theoretical

position error than a full rigidity constraint, and better real-

world performance than assuming a point contact model.

Solving for the joint positions directly from the desired task

space object pose, allowed us to implicitly solve the inverse

kinematics problem. This enabled our single implementation

to be successful for a diverse set of objects and grasps. A

thorough analysis of the errors shows that high accuracy can

be achieved using a kinematic only trajectory optimization

approach to in-grasp manipulation, while never dropping the

object.

Future work will involve adding object pose feedback to

reduce the obtained errors. Though we did not encounter

any collisions between the fingers during execution, we will

explore adding collision checking to our optimization frame-

work. Alternative smoothing costs to linear interpolation will

also be explored.
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