
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

Assembly Planning by Subassembly Decomposition
Using Blocking Reduction

James Watson1 and Tucker Hermans2

Abstract—The sequence in which a complex product is as-
sembled directly impacts the ease and efficiency of the assembly
process, whether executed by a human or a robot. A sequence
that gives the assembler the greatest freedom of movement is
therefore desirable. Our main contribution is an expression of
obstruction relationships between parts as a disassembly inter-
ference graph (DIG). We validate this heuristic by developing
a disassembly sequence planner that partitions assemblies in a
way that prioritizes access to parts, resulting in plans that are
comparable in efficiency to two state-of-the-art assembly methods
in terms of total plan length. Using DIG, our method generates
successive subassembly decompositions, yielding a tree structure
that makes parallization opportunities apparent. Our planner
generates viable disassembly plans by minimizing our part
blockage measure, and thereby demonstrates that this measure is
a valuable addition to the Assembly Sequence Planning toolkit.

Index Terms—Assembly; Manipulation Planning; Intelligent
and Flexible Manufacturing; Manufacturing, Maintenance and
Supply Chains

I. INTRODUCTION

ASSEMBLY planning concerns the ordering and planning
of actions that bring separate parts together to form

a complete, complex product assembly [1]. The study of
assembly planning is important to both the human performance
of assembly on the factory floor [2], and to the development
of fully autonomous industrial robotics systems [3]. Assem-
bly Sequence Planning (ASP) is a subproblem of assembly
planning that focuses on establishing the order in which to
assemble parts, given some suitable planner for the individual
motions [1].

The identification of subassemblies within a product is
central to assembly planning. We hypothesize that partitioning
a product into subassemblies in a way that respects both
assembly constraints and part access will result in assembly
plans that are time-efficient in the number of actions required
to execute the generated plans. Existing assembly planning
methods deal with part access as a separate validation step [4–
6]. Our method addresses part access as a direct, quantitative
measure.

Our main contribution is a graph structure which estimates
the interference that each part presents to the disassembly
of all other parts, called the disassembly interference graph

Manuscript received: March 5, 2019; Revised May 17, 2019; Accepted June
27, 2019. This paper was recommended for publication by Dan Popa upon
evaluation of the Associate Editor and Reviewers’ comments.

1Dept. of Computer Science, University of Colorado Boulder (completed at
U.ofUtah), Boulder, Colorado 80303, james.watson-2@colorado.edu

2School of Computing, University of Utah, Salt Lake City, Utah 84112,
thermans@cs.utah.edu

Digital Object Identifier (DOI): see top of this page.

(DIG). We exploit this graph to effectively partition complex
assemblies into logical subassemblies that respect correct
assembly precedence and yield disassembly sequence plans
with short makespans. Our approach has the advantage of
treating part disassembly interference as a cost to reduce dur-
ing subassembly identification. This prevents our planner from
rejecting advantageous subassemblies during the formation
phase. In the state of the art, and historically, part interference
is always treated as a hard constraint [7–9].

To show our method’s efficacy, we compare it to two
other subassembly partition methods [5, 6]. We evaluate
performance in terms of the number of actions required to
execute the resulting sequences. The other methods focus on
geometric properties of parts and their contacts and degree
of liaison graph nodes [6, 10], and geometric proximity [5].
The comparative methods use motion planning to validate
subassembly choices, but do not consider part interaction as
part of the subassembly choice, as ours does.

II. RELATED WORK

A. Subassembly Identification

The enormous combinatoric size of possible assembly se-
quences for any product motivates subassembly identification.
There are (2n − 2)!/(n − 1)! possible sequences of actions
for an assembly with n parts, if it is assumed that assembly
actions are monotonic [11]. This includes both feasible and
infeasible sequences. Partitioning a complete product assembly
into sub-assemblies is an effective strategy for containing the
combinatoric explosion. This partitioning task is itself an NP-
Complete problem [12].

A straightforward approach to subassembly identification
is to group parts by proximity, as Morato et al. did in [5].
Belhadj et al. [10] identify parts with many connections,
large surface area, and large volume as candidates to support
nearby parts in a sub-assembly. They build on this work in
[6] by requiring that parts assigned to the subassembly have a
stronger connection to the subassembly than to the remainder
of the assembly. Lee et al. [13] focus on the forces required
to separate a subassembly and define subassemblies as the
grouping that relieves the most disassembly forces at once,
found by max-flow min-cut [14]. Viganò and Gómez speed
up their search by delaying evaluation of feasibility until after
sub-assemblies are identified. [15]

B. ASP with Motion Planning

Current methods seek to incorporate motion planning into
ASP. That is, the cost and quality of motion plans influences

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Fig. 1: A cube rests in a notch cut from a cuboid plate. The
cube shown sits in a recess that allows for positive translation
along the three principal axes, or any direction in between.

the generation of sequences. The goal of these methods is to
take into account the difficulty of the task-space execution of
assembly sequences. Wan and Harada [16] incorporate grasp
planning and motion planning into each assembly operation,
executed with a serial manipulator. Morato et al. [5] generate
full motion plans to validate candidate subassemblies for their
ability to be installed into the product assembly as a unit. The
method we present fits into the hybrid category, as simple
motion plans are generated as a validation step.

This work does not address generating part fixtures for
assembly, but this is an area of ongoing research. [17–19]

III. METHOD

The basis for our method is the intuition that the ability to
execute an assembly depends on access to individual parts. Part
access can be modeled using the assembly geometry alone.
Following this intuition, we have developed a method that
identifies subassemblies in a way that prioritizes part access.
Part access can also be used to establish precedence among
identified subassemblies.

This section is structured as follows. We define the concept
of removal spaces as a necessary consideration for assembly
planning. Blocking fraction is introduced as a new heuristic
to measure the impingement upon removal spaces. Based on
this, we develop the disassembly influence graph (DIG) as a
structure that expresses how each part blocks the other from
being removed. Finally, we propose an assembly sequence
planner that exploits part access as the primary consideration
for sequence generation.

A. Removal Space

Defining the removal space is the first step in quantifying
part access. In order to model part access, we define a 3-
dimensional volume for each part called a removal space.
Local movement constraints between parts imply a removal
space representing the region of translation removal paths.
Once this region is defined, it can be evaluated for obstructions
that might impair disassembly actions, without generating and
evaluating individual paths. Using the model, part access, or
conversely part blockage, can be measured as a scalar quantity.

The removal space models a continuous space of possible
translations of a part away from it’s specified relative pose
within the complete assembly. Consider a cube resting on a
plate with a notch cut out of it. (Figure 1) It may be translated

away from the plate vertically, horizontally along either of the
notch walls, or any direction that has a positive dot product
with all of the notch face normals. These translation constraints
may be visualized as the spherical pyramid in Figure 2. The
removal space for a part is a region that begins at the part’s
assembled location and radiates out along possible translation
paths as it exits the assembly. We can imagine the curved
outward-facing surface of this region as a boundary (shell)
through which the cube must translate to be removed.

B. Blocking Fraction

We provide a heuristic for estimating the degree to which
one Part j obstructs another Part i from being disassembled,
called the blocking fraction (wij). We define the blocking
fraction wij as an expression of the degree to which the
removal space of a Part i is obstructed by another Part j.
Blocking fraction may be thought of as the complement of
part access.

The first step of calculating blocking fraction is the con-
struction of surfaces (shells), all concentric to the outer bound-
ary of the removal space. (Figure 3) At any distance d from
the part centroid, regions of the corresponding shell that are
in intersection with surrounding assembly geometry represent
positions unavailable for the part to occupy on its way out.
The greater the intersection area, the greater the obstruction.
The maximum fraction of the surface area of any shell that
is in collision with another part’s geometry is the blocking
fraction.

The spherical pyramid representation of free removal space
is not new in ASP. Romney analyzes the geometry of assem-
blies to generate an extended translational freedom cone in
[20]. Thomas et al. [21] use a cone in configuration space
to determine the feasibility of part removal operations. Our
method is different from the usual in that we compute the
obstruction of a cone of candidate removal directions, and
treat this blockage as a cost to be reduced.

Calculation of the blocking fraction for part Pi vs Pj , i 6= j
proceeds in three steps: determination of freedom type from
local part constraints, generation of concentric surfaces, and
calculating intersection of parts and surfaces. The constraints
imposed by adjacent parts Pj (reference assembly) determine

Fig. 2: Removal space of the cube shown in Figure 1,
represented by a spherical pyramid. Its flat surfaces are defined
by the constraints on local freedom.

WATSON et al.: ASSEMBLY PLANNING BY SUBASSEMBLY DECOMPOSITION 3

the degrees of freedom of Pi (moving assembly). Our system
can identify several types of freedom scenario ranging from
zero to three degrees of translational freedom. Construction

Algorithm 1 Blocking Fraction, with Moved Part Pi and
Reference Part Pj

1: procedure BLOCKING FRACTION(Pi, Pj , NDBG)
INPUT: Part Pi, Part Pj , NDBG
OUTPUT: Blocking Fraction wij ∈ [0, 1]

2: wij = 0
3: shells = construct_shells(Pi , NDBG)
4: for shell s in shells do
5: Ablock ← mesh_intersection(s , Pj)
6: As ← area_of(s)
7: wij ← max(wij ,Ablock/As)
8: end for
9: return wij

of intersection surfaces begins at the volume centroid of
the part, and the intervals between surfaces must be spaced
sufficiently close together to correctly capture when one part
passes through the interior of another.

C. Disassembly Influence Graph

We define the disassembly influence graph (DIG) as a means
of describing the degree to which each part blocks every other
part from being removed from the product assembly. The
vertices PD represent all of the parts in the product assembly
in their relative poses in the completed product, and directed
edges e(Pj , Pi) ∈ ED represent the degree to which Pi is
blocked from removal by Pj . The weight wij ∈WD represents
the blocking fraction Pi that intersects Pj . The DIG has n2

weights wij , and can be represented by an n × n matrix. In
general, this matrix is not symmetric. The interference measure
can also be calculated for collections of subassemblies.

The blocking fraction describes the blocked relationship
between Pi and Pj . The total blockage τi for part i describes
the degree to which a single part or subassembly is blocked
by all other parts, and is defined by:

τi =

N∑
j=1

[wi,j] (1)

where N is the total number of parts in the assembly con-
sidered. The quantity τi can be greater than one, which can

Fig. 3: Intersection surfaces, Spherical Pyramid.

happen either when the part i has many partial blockages along
its possible exit paths, or when it is completely covered by
more than one part.

Computation of the DIG requires a number of collision
detection calculations; O(mn2), where n is the number of
parts in the subassembly, and m is the number of concentric
shells used in each part-part interference determination. It is
only necessary to calculate the DIG once for each level of
disassembly, and only for the parts present in that subassembly.
Part interference does not need to be recalculated during
iterative subassembly identification for different choices of
nucleus parts. Our method also benefits from the efficiency of
the RAPID collision detection system [22], which drastically
reduces triangle-triangle intersection tests necessary for mesh
collision checking through the use of hierarchical, object-
aligned bounding boxes that are assigned before planning
begins.

D. Subassembly Identification by Blocking Reduction

Our method decomposes a complete assembly into sub-
assemblies whenever possible, and only falls back on single-
part removal operations when no such groupings can be made.
There are two main benefits to subdividing the disassembly
problem. The first is that it allows the problem to be solved
recursively, with each subassembly being treated as a smaller
disassembly problem. The second is that independent sub-
assemblies may be executed in parallel.

Algorithm 2 Subassembly Identification by Blocking Reduc-
tion

1: procedure SUBID BY BLOCKING REDUC-
TION(Assembly State S)
INPUT: Assembly part geometry, relative poses, liaison
graph, NDBG
OUTPUT: List of subassemblies

2: Identify base
3: Identify nucleus parts
4: Calculate DIG using nucleus-base contact
5: for Each nucleus part do
6: Accrue neighbors that do not increase blockage of

subassembly
7: Consider neighbors of added part
8: end for
9: Accept subassemblies below blocking threshold

10: for For each accepted subassembly do
11: Validate subassembly removal
12: end for
13: return Validated subassemblies

Generating a disassembly plan that prioritizes part access
proceeds along the following steps; choosing candidate sub-
assembly bases, determining removal spaces for parts of the
assembly, composing subassemblies with removal spaces free
from interference, and executing removal actions with the
freest part access first.

The primary aim of our method is to pull parts away from
the total assembly in groups that have the freest removal space.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

This is done by first choosing candidate subassembly centers
(nuclei) based on a global heuristic (as in [10]), and then
growing each candidate subassembly by conditionally adding
adjacent parts that minimize a measure of access we have
developed, called blocking fraction.

A single part may be partially blocked by several neighbors,
and cannot be removed. However, if this part can be removed
with its blocking neighbors as a unit, then it is a logical
candidate for a subassembly. (Figure 4) Also, adjacent parts
that can be removed as a unit become part of a subassembly.
Individual parts accrue neighbors whose addition does not
increase the total blockage τsub of a candidate subassembly.
After candidate subassemblies are generated, we calculate the
total blockage for each as a unit. Subassemblies that have a
sufficiently free removal space are validated by simulation.

The first step in the subassembly identification process is to
determine a base part. The part with the most volume serves as
the base part for the complete assembly, and is removed from
consideration for subassemblies, as in [5]. The remaining parts
are graded for their fitness as the nuclei of subassemblies using
the fitness score developed by Belhadj [10]. The largest gap
in score between any two part scores in a sorted, descending
list is chosen as the cutoff between nuclei parts and all others.
Then, the DIG is calculated for all non-base parts (including
nuclei), using only base-part constraints to determine the local
freedom of each part. The DIG is calculated using this freest
state so that changes in blockage can be evaluated with the
addition of each part to an assembly.

Formation of the first subassembly begins by considering
the nucleus part with the greatest base part fitness score. All
of the immediate neighbors of the nucleus part are added to a
priority queue, sorted by the degree to which each blocks the
nucleus part (blocking fraction). The total blockage τsub for
an assembly composed of the nucleus part and the prospective
addition is calculated by summing the rows of the DIG that
represent the participating parts, while excluding the columns
that correspond to those parts. If the addition of the part frees
a locked subassembly, the addition is automatically accepted.
(Figure 4) Likewise, an addition that causes a subassembly to
be locked is automatically rejected. If there was no change
to or from a locked state, then a prospective part is accepted
into a subassembly if the total blockage of the subassembly
is less than or equal to the blockage without the new part. If
a part is accepted, then its neighbors are enqueued. The next

Fig. 4: Part A cannot be removed alone, but a subassembly
consisting of A and B can.

most-blocking part is then popped from the queue, and the
process repeats on parts that have neither been evaluated nor
assigned to another subassembly. Once the queue is emptied,

the subassembly accumulation process is repeated on the nu-
cleus part with the next-highest score. The identification phase
ends when all nuclei and their neighbors have been evaluated
as described. Any non-base parts that remain unassigned at
the end of the identification phase are grouped into a single
remainder subassembly that includes the base.

The total blockage of each of the identified subassemblies
is evaluated with respect to the entire assembly. Only sub-
assemblies with a total blockage below a given threshold
τsub ≤ faccept are considered for removal. This prevents us
from simulating removals that are likely to fail. We empirically
found faccept = 0.85 to work well in our experiments.
Simulated removal is attempted for the subassemblies that
meet the criterion, in directions sampled from the subassembly
local freedom.

If the subassembly is able to be removed from the com-
plete assembly, then it is added to the precedence layer.
Unsuccessful subassemblies are added back onto a remainder
subassembly to be decomposed at the next recursion.

E. Sequence Generation from Disassembly Tree

The result of subassembly identification at each recursion
depth is a precedence layer [5] that represents all of the disas-
sembly operations that can be done without respect to order.
Successive decomposition of the assembly into precedence
layers results in a tree structure that represents the parallelism
of the (dis)assembly process in a straightforward way. This
tree structure can be used to represent the output of all three
subassembly identification methods described here.

By design, disassembly actions associated with sibling
nodes in the precedence layer do not interfere with each other
and have no precedence over another. Sibling actions can be
performed in any order without affecting makespan.

An assembly sequence can be readily derived from the
disassembly tree by starting with any leaf node and performing
the join operation represented by the edge from the node to
the parent, then proceeding with that leaf’s siblings. Leaves
associated with completed actions are removed and a new leaf
can be chosen for the next action. A parent subassembly cannot
be joined to the grandparent subassembly until all the child
join operations have been completed. The disassembly tree
also encodes the parallel nature of a plan; any two subtrees
with only leaf successors can be assigned to two different
workers.

F. Path Planning for Action Validation

Action validation proceeds in three stages. In the first stage,
the local freedom of all parts in the sub-assembly is checked. If
the freedom allowance of the assembly is empty (locked), then
the action validation fails. This happens during subassembly
identification, as detailed above. The second stage is a search
for a free translation path through task space in order to
determine whether a certain action is feasible, considering
collision with other parts and the table on which the assembly
rests.

WATSON et al.: ASSEMBLY PLANNING BY SUBASSEMBLY DECOMPOSITION 5

G. Assumptions and Constraints

We make the following assumptions:
1) All parts are represented by closed, rigid polyhedral

meshes with nominal dimensions. Tolerances are not
modeled.

2) Sequential, one-handed operations are assumed.
3) All assembly operations are monotonic. Once joined,

two parts remain rigidly joined.
4) All assembly operations are reversible, and a valid

removal operation implies that the reverse assembly
operation is valid.

5) Adjacent parts in the design are assumed to be connected
and can support any other adjacent part.

6) Contact dynamics are not modeled.
We believe these assumptions are reasonable because most

manufactured products contain a subset of rigid parts that are
immobile relative to one another.

IV. EXPERIMENTS

In order to show the efficacy of our method, we generate
disassembly plans using all three methods described above
for two assembly problems. (Figure 5 and 6) We compare
the disassembly plans generated by our method to the plans
generated by the methods presented in [5] and [6] in terms of
makespan and speedup. The products tested are listed in Table
I.

A. Tested Assemblies

We used two test cases to compare the methods. The first is
a “Module Box”, designed for this work. (Figure 5) It consists
of a larger outer case with a collection of parts inside and
an ‘antenna’ structure that protrudes from the top. It is an
assembly with groupings of parts that can form subassemblies.
Note that these groupings are not defined as part of the
assembly definition, these must be identified by the methods.
There are also ‘bridge’ structures that span the groupings
that require precedence to be considered in order to execute
the assembly correctly. The second is the “Motor Driver”,
presented by Wang, Liu, and Zhong [23], that represents
an electric motor in an enclosure. This assembly has parts

Fig. 5: Module Box test case, created for this experiment

Fig. 6: Motor Driver test case, from Wang, Liu, and Zhong
[23], shown here semi-transparently to reveal the interior parts.
A peg and a post are in front of the motor, there are one each
of the peg and post π radians from those in the foreground.

TABLE I: Tested Products

Design Parts Source
Module Box 12 N/A
Drive Motor 8 Wang, Liu, & Zhong [23]

covering the top and bottom that obstruct the removal of
interior parts.

We express the plans produced by each method as tree
structures, with the root as the completed assembly, branching
into nodes representing subassemblies, and terminating in
leaves representing individual parts.

B. Part Interaction Clusters, Morato 2013

Morato et al. [5] make the assumption that parts that are
clustered in physical space are related, and thus candidates
for inclusion in a subassembly. This method was chosen
because it is a fairly recent method that employs a simple
clustering algorithm to produce candidate subassemblies. This
is an appropriate baseline as the most straightforward means
of producing feasible subassemblies.

During the implementation of this method, clusters that were
not fully connected were noted. These obviously cannot be
removed as a unit. The remedy for this was to automatically
break up disjoint clusters into connected subassemblies and
proceed as though they had been created during the clustering
step. The original work did not address this scenario.

C. Subassembly Generation from CAD, Belhadj 2017

Belhadj et al. [10] also rely on the identification of base
parts as the first step of subassembly identification. Sub-
assemblies accrue neighbors by evaluating their connecting
surfaces. They continue this work with [6] with a different
collection of assembly problems. This method was chosen
because it is representative of state of the art methods that use
the connectivity and geometric relationships between parts to
identify subassemblies.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

D. Validation Process

For the tested assembly problem, the product begins in the
fully assembled state. The environment for the simulation is a
flat surface on which the fully assembled product rests.

For all methods, we enforce constraints on disassembly
validation in order to simulate the aspects of a removal
operation that are, in general, relevant to the execution of the
operation by a robot, but not particular to any model of robot.
The system enforces that the assembly be stably supported
under gravity by the floor before and after the removal of
the subassembly or parts. A removal operation is successful
if a straight-line removal path can be found that collides
neither with the floor nor the reference parts. We believe this
approximation is reasonable because it ensures the current
moving subassembly is accessible at its disassembly step, and
that the plan produced can be achieved by simple, straight-
line movements that are easily executed by widely-available
dexterous arms.

Each plan generated by each method is validated as de-
scribed above. If a removal action is blocked by the resting
surface, then a reorientation action is taken that brings the
removal direction closest to vertical. If validation fails, then the
method has failed to produce a correct plan for the assembly.
The consideration of orientation is necessary as part of the
validation stage, as we require a stably-supported pose to exist
for each step of a plan in order classify it as feasible.

E. Assembly Line Simulation

In order to study how plan complexity impacts manu-
facturing time, we simulate a simple robotic assembly line
environment. The line consists of 1 to 3 worker agents (robots).
Assembly proceeds in discrete time, with one assembly opera-
tion (reverse of disassembly) taking one time unit to complete.
Only one subassembly can be assigned to any worker at any
time in this scheme. That is, no two workers ever perform
simultaneous actions in which the moved subassemblies have
the same reference subassembly. Each timestep is composed
of two phases; assignment and execution. During assignment,
each idle robot is given a job (subassembly) for which the
constituents are available: either single free parts or already-
completed subassemblies. (Subassemblies with incomplete
constituents are not available to be assigned, thus enforcing
the precedence encoded by the tree.) In the execution phase,

TABLE II: Performance for Module Box Problem

Method Robots Makespan Speedup

Block. Reduc.
1 11 N/A
2 7 1.57
3 6 1.83

Morato
1 11 N/A
2 7 1.57
3 6 1.83

Belhadj
1 11 N/A
2 7 1.57
3 5 2.20

each robot marks one action of its job as complete. If a robot
completes its job as a result of the execution step, then that
robot becomes idle and the subassembly becomes complete at
the start of the next step. Workpiece rotations and subassembly
transfers between workers are not modeled in this scenario for
the sake of simplicity. In this scheme, available subassemblies
are assigned in order of decreasing depth in the disassembly
graph.

F. Measures for Evaluation

We use the following measures of disassembly plan effi-
ciency in order to compare the results of each method. For each
measure, the calculation method and the motivating rationale
are given.

The first measure is makespan, which is a common in
measuring scheduling efficiency. [24, 25] It is the amount of
time between the beginning and the completion of a plan.

The second measure is speedup, which is the unit-less ratio
of makespan of a plan with no parallelization (serial execution)
to the makespan the same plan with parallel execution. Its aim
is to express the multiplication of throughput as a result of
adding more workers. [24]

V. RESULTS

A. Subassembly Decomposition Results

Complete disassembly plans were generated for the assem-
bly test cases described in Section IV.

The resulting plans are visualized in Figures 7 through 12.
In each of the plan visualizations, subassemblies are enclosed
by a blue box. Each arrow represents an assembly action
with the moving part at the tail and the reference (stationary
base) part at the head. Each stage of disassembly is labeled
with the numbers of the constituent parts and subassemblies.
Parentheses indicate subassembly groupings, with a primary
subassembly in a single set of parentheses. Each planner was
run 10 times on each test case on a computer with a i3-6100
CPU. For the Module Box, the Morato, Belhadj, and DIG
planners ran for an average of 1.65, 1.39, and 10.05 seconds,
respectively. For the Motor Driver, running times were 14.94,
15.52, and 47.15 for the same planners.

TABLE III: Performance for Motor Driver Problem

Method Robots Makespan Speedup

Block. Reduc.
1 7 N/A
2 5 1.40
3 5 1.40

Morato
1 7 N/A
2 6 1.17
3 6 1.17

Belhadj
1 7 N/A
2 7 1.00
3 7 1.00

WATSON et al.: ASSEMBLY PLANNING BY SUBASSEMBLY DECOMPOSITION 7

Fig. 7: Blocking Reduction assembly plan for the Module Box.

B. Assembly Line Results

For each of the plans generated by the tested methods, we
ran a simulated assembly procedure as described in Section
IV-E. The results of sequence execution for the Module Box
and Motor Driver can be seen in Tables II and III, respectively.
Performance of the sequence execution is expressed in the
metrics defined in Section IV-F. Our method and Morato
perform identically on the Module Box test case, as seen in
Table II. (Figures 7 and 8) The plan generated by the Belhadj
method has a shorter makespan in the three-robot scenario
with a speedup of 2.2 versus the 1.8 speedup for the other
two methods. Belhadj performs identically to the other two
methods in and 1 and 2 robot scenarios.

The Belhadj plan for the Motor Driver test case (Table III)
cannot be parallelized at all because it has only a single chain
of subassemblies between it and the root, with no parallel
branches. (See Figure 9.) Morato fares slightly better, offering
a 1 time-step reduction in makespan because its disassembly
tree has 2 branches. Our method has a speedup of 1.40 versus
1.17 for Morato. None of the tested methods produce a plan

Fig. 8: Morato assembly plan for the Module Box.

suitable for execution on 3 robots because there are not enough
parallel branches to distribute between workers.

The workcell simulation shows that in order for a plan to
make the greatest use of parallelization (speedup), it should be
composed of the greatest number of branches of equal length
as possible.

Fig. 9: Belhadj assembly plan for the Module Box.

Fig. 10: Blocking Reduction assembly plan for the Motor
Driver

VI. CONCLUSION

We present a graph structure representing the total part-vs.-
part blocking state within a total assembly: the disassembly
interference graph. In this structure, removal obstruction is
expressed as a scalar heuristic. We compute this heuristic

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

without undertaking an exhaustive search of removal paths. We
validate these novel contributions by developing a disassembly
planner that yields intuitive, tightly-grouped subassemblies.
The performance of our method is comparable to or better than
two recent methods in terms of makespan and speedup through
parallelization. The results show that a numeric measure of
the obstruction state of parts and subassemblies can be used
to generate viable assembly plans, and that consideration of
part access must be considered at every stage of planning, not
just as a validation step.

Fig. 11: Morato assembly plan for the Motor Driver

Fig. 12: Belhadj assembly plan for the Motor Driver

REFERENCES

[1] T. De Fazio and D. Whitney, “Simplified generation of all mechanical
assembly sequences,” IEEE Journal on Robotics and Automation, vol. 3,
no. 6, pp. 640–658, 1987.

[2] N. Rafibakhsh and M. I. Campbell, “Beyond optimal sequencing:
Defining part orientation and worker allocation in assembly,” in ASME
2015 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, pp. V004T05A009–
V004T05A009, American Society of Mechanical Engineers, 2015.

[3] W. Wan, F. Lu, Z. Wu, and K. Harada, “Teaching robots to do object
assembly using multi-modal 3d vision,” Neurocomputing, vol. 259,
pp. 85–93, 2017.

[4] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot:
An autonomous multi-robot coordinated furniture assembly system,”
International Conference on Robotics and Automation (ICRA), 2016.

[5] C. Morato, K. N. Kaipa, and S. K. Gupta, “Improving assembly
precedence constraint generation by utilizing motion planning and part
interaction clusters,” Computer-Aided Design, vol. 45, no. 11, pp. 1349–
1364, 2013.

[6] M. Trigui, I. Belhadj, and A. Benamara, “Disassembly plan approach
based on subassembly concept,” The International Journal of Advanced
Manufacturing Technology, vol. 90, no. 1-4, pp. 219–231, 2017.

[7] Y. Laili, F. Tao, D. T. Pham, Y. Wang, and L. Zhang, “Robotic disas-
sembly re-planning using a two-pointer detection strategy and a super-
fast bees algorithm,” Robotics and Computer-Integrated Manufacturing,
vol. 59, pp. 130–142, 2019.

[8] M. Kheder, M. Trigui, and N. Aifaoui, “Optimization of disassembly se-
quence planning for preventive maintenance,” The International Journal
of Advanced Manufacturing Technology, vol. 90, no. 5-8, pp. 1337–1349,
2017.

[9] N. Ong and Y. Wong, “Automatic subassembly detection from a product
model for disassembly sequence generation,” The international journal
of advanced manufacturing technology, vol. 15, no. 6, pp. 425–431,
1999.

[10] I. Belhadj, M. Trigui, and A. Benamara, “Subassembly generation
algorithm from a cad model,” The International Journal of Advanced
Manufacturing Technology, vol. 87, no. 9-12, pp. 2829–2840, 2016.

[11] R. M. Marian, Optimisation of assembly sequences using genetic algo-
rithms. PhD thesis, University of South Australia, 2003.

[12] L. E. Kavraki and M. N. Kolountzakis, “Partitioning a planar assembly
into two connected parts is np-complete,” Inf. Process. Lett., vol. 55,
pp. 159–165, Aug. 1995.

[13] S. Lee and H. Moradi, “Disassembly sequencing and assembly sequence
verification using force flow networks,” in Robotics and Automation,
1999. Proceedings. 1999 IEEE International Conference on, vol. 4,
pp. 2762–2767, IEEE, 1999.

[14] G. B. Dantzig and D. Fulkerson, “On the min cut max flow theorem of
networks,” Annals of Mathematical Study, vol. 38, pp. 215–222, 1956.

[15] R. Viganò and G. O. Gómez, “Automatic assembly sequence exploration
without precedence definition,” International Journal on Interactive
Design and Manufacturing (IJIDeM), vol. 7, no. 2, pp. 79–89, 2013.

[16] W. Wan and K. Harada, “Integrated single-arm assembly and manipula-
tion planning using dynamic regrasp graphs,” in 2016 IEEE International
Conference on Real-time Computing and Robotics (RCAR), pp. 174–179,
June 2016.

[17] R. G. Brown and R. C. Brost, “A 3-d modular gripper design tool,” IEEE
Transactions on Robotics and Automation, vol. 15, no. 1, pp. 174–186,
1999.

[18] Y. Xing and Y. Wang, “Assembly operation optimization based on social
radiation algorithm for autobody,” Advances in Mechanical Engineering,
vol. 6, p. 854637, 2014.

[19] C. Cao, W. Wan, J. Pan, and K. Harada, “Analyzing the utility of
a support pin in sequential robotic manipulation,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pp. 5499–
5504, IEEE, 2016.

[20] B. Romney, Atlas: An Automatic Assembly Sequencing and Fixturing
System, pp. 397–415. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997.

[21] U. Thomas, M. Barrenscheen, and F. M. Wahl, “Efficient assembly
sequence planning using stereographical projections of c-space obsta-
cles,” in Assembly and Task Planning, 2003. Proceedings of the IEEE
International Symposium on, pp. 96–102, IEEE, 2003.

[22] G. Zachmann, “Rapid collision detection by dynamically aligned dop-
trees,” in Proceedings. IEEE 1998 Virtual Reality Annual International
Symposium (Cat. No. 98CB36180), pp. 90–97, IEEE, 1998.

[23] J. Wang, J. Liu, and Y. Zhong, “A novel ant colony algorithm for
assembly sequence planning,” The international journal of advanced
manufacturing technology, vol. 25, no. 11, pp. 1137–1143, 2005.

[24] T. Hagras and J. Janecek, “A high performance, low complexity al-
gorithm for compile-time task scheduling in heterogeneous systems,”
in Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, p. 107, IEEE, 2004.

[25] J. A. Marvel, R. Bostelman, and J. Falco, “Multi-robot assembly
strategies and metrics,” ACM Computing Surveys (CSUR), vol. 51, no. 1,
p. 14, 2018.

